
MiniM InterConnect

Eugene Karataev
support@minimdb.com

http://www.minimdb.com/tools/interconnect.html

November 26, 2016

2

Contents

1 Introduction 5

2 Installation 7
2.1 Cache’ . 7
2.2 GT.M . 9
2.3 MiniM . 12
2.4 Examples . 13

3 Application Interface 15
3.1 Variables . 15
3.2 Open . 15
3.3 Close . 16
3.4 Error . 16
3.5 Read . 17
3.6 Write . 18
3.7 Kill . 18
3.8 Execute . 18
3.9 OnGroupRead . 19
3.10 OnOutput . 20
3.11 OnCallback . 22
3.12 ExecuteOutput . 24

4 Uninstallation 25
4.1 Cache . 25
4.2 GT.M . 25
4.3 MiniM . 25

3

4 CONTENTS

Chapter 1

Introduction

MiniM Interconnect is a TCP/IP layer to connect two jobs of different
MUMPS servers in a client-server mode.

Interconnect works in a client-server mode, when one process on one
side calls second process on a other side and both processes are on different
MUMPS servers. MUMPS servers can be MiniM, Cache or GT.M in any
pairs, any versions and on any supported by vendors operating systems.

Both sides are implemented as MUMPS routines, with need vendor-
specific code to use custom InterConnect protocol over TCP/IP network
connection.

MiniM InterConnect was based on the MiniM Server Connect protocol
and after porting one to other MUMPS systems is a usable tool to connect
two MUMPS servers. MUMPS servers can have owned protocols to imple-
ment server-server connection. GT.M implements OMI, Cache implements
ECP, and MiniM now does not has custom distributed connection protocol.
MiniM InterConnect is a vendor-independent protocol to connect different
MUMPS servers.

This tool can be ported to any other MUMPS system with support of
TCP/IP devices.

To setup MiniM InterConnect administrator imports with compilation
need side of protocol - server, client or both and make settings of TCP/IP
port where server side should wait incoming connections. This port and
address of this server need to be used in connecion code on the client
side. By default, MiniM InterConnect uses ports 5000 for MiniM, 5001
for Cache and 5002 for GT.M. Different ports are used to allow servers to
work on the same computer.

MiniM InterConnect can connect not only different MUMPS servers but
also servers of one vendor, and with different versions: MiniM to MiniM,
GT.M to GT.M or Cache to Cache. For example, connect Cache with ECP

5

6 CHAPTER 1. INTRODUCTION

and Cache without ECP support.
Application Programming Interface of MiniM InterConnect consists not

of direct global access, it is client-server protocol, where client side eval-
uates expressions on the server, executes line of commands and gets data
by different modes. So developers can use any server-side specific func-
tions and commands and call subroutines on the server in full-functional
client-server mode.

On the server side MiniM InterConnect runs one MUMPS job to each
connection and client side can be connected to different servers at the same
time. Administrators should know about process usage on the server - each
connection use one job and plus one job is used by the MiniM InterConnect
daemon.

Server side of MiniM InterConnect is the same as used by MiniM
Client Tools, Cache Tools and GT.M Tools from www.minimdb.com, so
if this tools already in use, server side of MiniM InterConnect already is
ready to use.

MiniM InterConnect have not special requirements to operating system,
processor or bitness of processor, becouse was written on the MUMPS.

Chapter 2

Installation

2.1 Cache’

Server-side part of MiniM InterConnect for Cache is a TCP/IP daemon. Is
is special background job which wait incoming TCP/IP connection and run
child process for each connection. This part was written in MUMPS and
contains in the %srv routine.

MiniM InterConnect works with 8-bit Cache instances only and has not
unicode version.

To import this routine go to the Cache portal, select the %SYS database
and import the srv.rsa file. Or run the Cache Studio and import this routine
in XML format from the %srv.xml file. This files contains the same routine
and differs only by formats.

Routine can be loaded using Cache Portal, Cache Studio, or from termi-
nal

USER>zn "%sys"
%SYS>d $System.OBJ.Load("path/to/%srv.xml","C")

This commands will import routine with compilation.
Or use the %RI utility in the %SYS namespace:

USER>zn "%sys"

%SYS>d ^%RI

Input routines from Sequential
Device: path/to/srv.rsa
Parameters? "RS" =>

7

8 CHAPTER 2. INSTALLATION

File written by OLD %RO on 04 Dec 2015
4:20 PM with description:

Cache for Windows NT^^Export 1 routines
from database USER^~Format=Cache.S~

(All Select Enter List Quit)

Routine Input Option: all Routines

If a selected routine has the same name as
one already on file,

shall it replace the one on file? No => Yes
Recompile? Yes => Yes
Display Syntax Errors? Yes => Yes

^ indicates routines which will replace those
now on file.

@ indicates routines which have been [re]compiled.
- indicates routines which have not been filed.

%srv.INT^@

1 routine processed.

In all places where %RI asks what to do, enter first letter of your answer
and press Enter, utility completes answer.

After this routine is ready to work. To run daemon open terminal or
telnet and execute in any database code to run daemon:

USER>d ^%srv
Cache TCP server ^%srv.
Cache TCP server ^%srv has been run.

By default, daemon waits incoming TCP/IP connection on the port
5001. To change this value, enter the port number (for example, 5055) into
settings global:

USER>s ^%SRV("port")=5055

This value is used on the daemon starting. So stop the daemon by
running:

2.2. GT.M 9

USER>d stop^%srv

And run again:

USER>d ^%srv
Cache TCP server ^%srv.
Cache TCP server ^%srv has been run.

If this %srv daemon active, MiniM InterConnect can be run and con-
nected to this InterSystems Cache instance.

To run MiniM InterConnect daemon automatically on Cache start, edit
special %ZSTART routine. Label SYSTEM in this routine Cache executes
each time when starts. So, add after this label code to run MiniM Inter-
Connect daemon like the following:

SYSTEM ;
; Cache starting
d ^%srv
...

To see more information about %ZSTART routine, see InterSystems
Cache documentation.

While daemon works, he writes diagnostic messages to builtin Cache
log file cconsole.log.

This daemon already in use by Cache Tools, so if Cache Tools has been
already run, server side of MiniM InterConnect is ready to run too.

To install client side of MiniM InterConnect for Cache, import rou-
tine %cli from the Cache subdirectory of MiniM InterConnect installation
archive.

2.2 GT.M

Server-side part of MiniM InterConnect for GT.M is a TCP/IP daemon
written in MUMPS. This additional job opens TCP/IP port, waits incoming
connections and runs job to each one to service requests. All code of this
daemon is in one routine %srv.

MiniM InterConnect works with 8-bit GT.M instances only and has not
unicode version.

Select subdirectory for GT.M where unpacked zip with MiniM Inter-
Connect. There is file %srv.rou with server side routine. First of all this
routine must be imported into GT.M by using builtin routine import utility

10 CHAPTER 2. INSTALLATION

GTM>d ^%RI

Enter there real full name of the file srv.rou.
After importing compile them by call

GTM>zcompile "_srv.m"

Underscores are used by GT.M in file names instead of the percent
symbol.

And link routine by call

GTM>zlink "_srv.m"

After this steps routine %srv is ready to be used.
This daemon uses by default TCP/IP port number 5002. To change

this, write into global port number, for example to use port number 6003
execute:

GTM>s ^%SRV("port")=6003

To stop %srv daemon manually or from other procass call

GTM>d stop^%srv

This code fire stop indicator and returns immadiately. Stop indicator
periodically checked by %srv daemon and daemon will stop.

To start %srv daemon manually or from other process call

GTM>d ^%srv

This code runs MUMPS job for daemon and returs immediately.
To prevent manually enter this code on each start of GT.M server, add

running of this code into the GT.M run script. See file gtmstart at point
where this script runs GT.CM server. This may looks like this:

echo "Starting GT.CM (${service}, ${id})..."
if [! -d $logdir/$service]
then
$echo "logging directory (${logdir}/${service}) ...
mkdir $logdir/$service

fi
nohup $gtm_dist/gtcm_run -service $service -id ${id ...
>> $logdir/${service}/session.log 2>&1 < /dev/null &

2.2. GT.M 11

if [$? != 0]; then
$echo "The GT.CM server (${service}) failed to start."

fi
sleep 1
done < $gtm_dist/gtcm_slist

And after running GT.CM add running of %srv daemon by adding code

$gtm_dist/mumps -r ^%srv

And gtmstart script may looks like this:

echo "Starting GT.CM (${service}, ${id})..."
if [! -d $logdir/$service]
then

$echo "logging directory (${logdir}/${service}) ...
mkdir $logdir/$service

fi
nohup $gtm_dist/gtcm_run -service $service -id ${id ...

>> $logdir/${service}/session.log 2>&1 < /dev/null &

if [$? != 0]; then
$echo "The GT.CM server (${service}) failed to start."

fi
sleep 1

Run tcp/ip listener ^%srv
$gtm_dist/mumps -r ^%srv

done < $gtm_dist/gtcm_slist
fi

else
exit

fi

On running of GT.M start sequence we may see additional diagnostic
message:

12 CHAPTER 2. INSTALLATION

Starting the GT.CM server(s).
Starting GT.CM (omi, 42)...
GT.M TCP server ^%srv.
GT.M server ^%srv is running.

%srv daemon additionally writes internal diagnostic messages into sys-
tem log and messages can be viewed in syslog in the /var/log subdirectory
like the following line:

Jul 9 13:01:44 debian GTM-MUMPS[2137]:
GT.M server ^%srv is running.

This daemon already in use by GT.M Tools, so if GT.M Tools has been
already run, server side of MiniM InterConnect is ready to run too.

To install client side of MiniM InterConnect for GT.M, import rou-
tine %cli from the GT.M subdirectory of MiniM InterConnect installation
archive.

2.3 MiniM

MiniM instances by default contains the %srv routine and by default this
routine updates on upgrade. Bydefault %srv daemon for MiniM InterCon-
nect is used by all MiniM GUI Tools and by MWA. So default MiniM
installation is ready to run server-side MiniM InterConnect.

By default the %srv daemon runs from the autostart.m script and this
daemon uses by default TCP/IP port 5000. To change this port, write into
global port number, for example to use port number 6003 execute:

%SYS>s ^%SRV("port")=6003

To run this daemon if one was not running call

%SYS>d ^%srv

and to stop daemon call

%SYS>d stop^%srv

To install client side of MiniM InterConnect for MiniM, import rou-
tine %cli from the MiniM subdirectory of MiniM InterConnect installation
archive.

2.4. EXAMPLES 13

2.4 Examples

Examples are additional code samples how MiniM InterConnect can be
used, and does not used by MiniM InterConnect server- or client-side rou-
tines. This examples can be imported and removed any time and are in-
cluded only for developers.

14 CHAPTER 2. INSTALLATION

Chapter 3

Application Interface

3.1 Variables

MiniM InterConnect API uses only one variable - %cli and this variable
should not be newed.

MiniM InterConnect API supports several connections to different servers
in the same time and each connection identifies by one value - internal iden-
tificator of connection.

This identificator is not zero for established connection and zero if open-
ing of connection fails. Identificator is an index value inside of %cli variable
and all assosiated with connection data are stores inside this subnodes.
Different versions of MiniM InterConnect API can have different internal
structures.

To identify MiniM InterConnect connection use only one value:

s connection=$$Open^%cli(params...)
...
d Proc^%cli(connection,params...)
...
d Close^%cli(connection)

3.2 Open

The Open function creates new connection to server side and accepts
TCP/IP server name (or TCP/IP address), TCP/IP port where server side
runs and database name if connects to MiniM or Cache server.

$$Open^%cli(server,port,database)

15

16 CHAPTER 3. APPLICATION INTERFACE

Return value is 0 if connection cannot be established or non-zero value
otherwise.

After creating connection this client job owns one more opened TCP/IP
device, so do not close all devices by argumentless CLOSE command.

s server="192.168.2.12"
s port=5000
s database="user"
s connection=$$Open^%cli(server,port,database)
i ’connection d q
. w $$Error^%cli(connection),!
...
d Close^%cli(connection)

If server side is GT.M, the database parameter is ignored, and for MiniM
or Cache server side swithes to specified database.

3.3 Close

The Close subroutine terminates connection with the server side daemon
and removes internal data associated with this connection.

d Close^%cli(connection)

After this call don’t use this connection value.

3.4 Error

Function Error returns string with last error occured on last call or empty
string on no error. This string contains values of $zerror for MiniM and
Cache and value derived of $zstatus value with indicator of error text and
possible error place.

Short example to call GT.M server and show

USER>s connection=$$Open^%cli("localhost",5002,"")

USER>s name=$$Read^%cli("$zv")

<UNDEFINED> :Read+1^%cli: *%cli("$zv","dev")

3.5. READ 17

USER>s name=$$Read^%cli(connection,"$zv")

USER>w name
GT.M V6.2-002A Linux x86
USER>w $$Error^%cli(connection)

USER>s name=$$Read^%cli(connection,"undefined")

USER>w $$Error^%cli(connection)
%GTM-E-UNDEF, Undefined local variable: undefined at eval^%srv
USER>s value=$$Read^%cli(connection,"any illegal syntax")

USER>w $$Error^%cli(connection)
%GTM-E-INDEXTRACHARS, Indirection string contains extra
trailing characters at eval^%srv
USER>

USER>d Close^%cli(connection)

Real string with error is dependent of the server side server and server
version. String with last error occured on the server is stored inside the
%cli variable for each connection.

3.5 Read

Function Read returns value of exaluated on the server side MUMPS ex-
pression. Expression can be specified as any valid MUMPS expression
including variable names, builtin functions, operators and other language
elements.

$$Read^%cli(connection,expression)

Return value is stored as it was evaluated on the server, including all
nonprintable characters. If server returns list strictures or any special
strings, function Read return entire this value.

Example:

%SYS>s value=$$Read^%cli(connection,"$c(13,10)")

%SYS>zzdump value

0000: 0D 0A

18 CHAPTER 3. APPLICATION INTERFACE

3.6 Write

Function Write assignes value to variable on the server side.

Write^%cli(connection,varname,varvalue)

In the varname can be used any local, global, or assignable system
variables or indirection expression valid for the SET command. String with
variable name must have correct MUMPS syntax if contains indices.

%SYS>d Write^%cli(connection,"vvv","123")

%SYS>w $$Read^%cli(connection,"vvv")
123

And can be recommended before writing to variable with indices write
the name first and write value with indirection.

%SYS>d Write^%cli(connection,"tmp","cmpnd(""ind"")")

%SYS>d Write^%cli(connection,"@tmp","789789")

%SYS>w $$Read^%cli(connection,"cmpnd(""ind"")")
789789

3.7 Kill

Function Kill kills specified variable name or indirectly specified variable
name on the server side.

Kill^%cli(connection,varname)

Here in the varname can be used local, global variables, and system or
structured system variables for which server supports KILL command.

3.8 Execute

Function Execute calls server side to execute line of commands as an ar-
gument of the XECUTE command. Here can be directly and indirectly
specified commands.

3.9. ONGROUPREAD 19

Execute^%cli(connection,commands)

Argument "commands" can contain any valid XECUTE argument sup-
ported by the server. Be careful with dots - they are not supported by
MUMPS and with QUIT command with an argument - in most cases it is
an error dataflow.

Example:

%SYS>d Execute^%cli(connection,"s rrr=456")

%SYS>w $$Read^%cli(connection,"rrr")
456

3.9 OnGroupRead

Subroutine OnGroupRead assignes label with need to be called when server
uses special data transfer in "GroupRead" mode. When server code executes
and calls

d wo^%srv(datastring)

then on the client fires event OnGroupRead with entire value passed from
the server (here in code it is datastring).

Label need to be specified with routine name becouse this code must be
work while routine %cli is current routine.

Label must be passed without dollar signes, quotes and other symbols.
Label must acceps arguments:

OnGroupRead(connect,value)

Label does not quit any value and called as subroutine using DO com-
mand.

Here connect have current connection descriptor value and value con-
tains data was passed from the server.

Example:

...
d OnGroupRead^%cli(connect,"OnGroupRead^CLIEXAM4")
...
s commands="s i="""" f s i=$o(^ROUTINE(i)) q:i=""""

d wo^%srv($lb(i,$zd($g(^ROUTINE(i,0)),3)))"

20 CHAPTER 3. APPLICATION INTERFACE

d Execute^%cli(connect,commands)
...
; unpack name and date and print
OnGroupRead(connect,value)
w "Routine name: ",$lg(value,1),", date change: ",$lg(value,2),!
q

Here is routine from example set CLIEXAM4. Code calls OnGroupRead
subroutine and pass label and routine name to be event handler. Before
calling this label code of %cli restores current device which was before
calling %cli routine.

Be careful that this event handler executes before then code of Execute
returns control. Event handler OnGroupRead fires to each call of woˆ%srv.

Internal data transfer protocol of this event delivers data of string passed
from the server to the client without waiting of confirmation, so data trans-
fer code can work as fast as possible. This data transfer mode is mostly
recommended to fill string lists, string grids, transfer big texts, and other
transfer of homogenous set of data strings.

This event can occures at any server call except ExecuteOutput - there
all data stream transfers as is, without delimiting to separate data strings.

To remove this event handler, pass empty string:

d OnGroupRead^%cli(connect,"")

If no event handler was assigned, no any label on the client will be
called even if server calls woˆ%srv, this data will be lost on the client.

This event can be called in any context except ExecuteOutput subroutine
was called.

3.10 OnOutput

Subroutine OnOutput assignes event handler which fires when server writes
data to current device while works subroutine ExecuteOutput. All data
stream passed to event handler with undefined length until zero bytes
reached. Zero byte will be send by server side after last commands ex-
ecutes. So this data transfer mode is not recommended for data passing
when server can pass zero byte as part of data.

d OnOutput^%cli(connection,label)

3.10. ONOUTPUT 21

Label need to be specified with routine name becouse this code must be
work while routine %cli is current routine.

Label must be passed without dollar signes, quotes and other symbols.
Label must accept arguments:

OnOutput(connect,data)

Label does not quit any value and called as subroutine using DO com-
mand.

Here connect contains current connection descriptor and data contains
next part of data passed from the server. The length of this data is undefined
and passed as received from the TCP/IP socket. If server side calls special
write arguments such as "w !" or "w ?", client side cannot recognise this
write forms and accepts real bytes passed from the server to current device.
In depending of server software, for example, command "w !" can pass to
the socket the sequence

$C(10)

or

$C(13,10)

Example:

...
d OnOutput^%cli(connect,"OnOutput^CLIEXAM2")
...
OnOutput(connect,str)
w str
q

Here all output received from the server simply writes out to current
device.

Before calling this label code of %cli restores current device which was
before calling %cli routine.

The OnOutput catching mode can be recommended to receive ordinal
output to current device made by compilers and ordinal CHUI software
without using escape sequences.

To remove this event handler, pass empty string:

d OnOutput^%cli(connect,"")

If no event handler was assigned, no any label on the client will be
called even if server writes to current device, this data will be lost on the
client.

This event can be called only in the ExecuteOutput context.

22 CHAPTER 3. APPLICATION INTERFACE

3.11 OnCallback

Subroutine OnCallback assignes event handler for calling client back from
the server while server code calls $$cbˆ%srv(datastring).

When server side calls $$cbˆ%srv(datastring), it waits while client side
receives datastring and make answer. Server side receives answer from the
client and continues execution.

d OnCallback^%cli(connection,label)

Label need to be specified with routine name becouse this code must be
work while routine %cli is current routine.

Label must be passed without dollar signes, quotes and other symbols.
Label must accept arguments:

OnCallback(connect,datastring)

Label requires QUIT value which will be passed to the server side back
and this value will receive $$cbˆ%srv(datastring) and this label on the
client side calls as user function $$.

To remove this event handler, pass empty string:

d OnCallback^%cli(connect,"")

If no event handler was assigned, no any label on the client will be
called, data passed from the server will be lost on the client and server side
will receive empty string.

Example:

...
d OnCallback^%cli(connect,"OnCallback^CLIEXAM5")
; call routine which call client back
s value=$$Read^%cli(connect,"$$callback^example5()")
...
OnCallback(connect,command)
n value,answer
; in this contex we can call MiniM
; in example 5 we ignore Command value
s value=$$Read^%cli(connect,"$zt($p($h,"","",2))")
; compose callback answer
s answer=" time: "_value
; trace execution order

3.11. ONCALLBACK 23

n saveio s saveio=$io u $p
w "Client on command """,command,""" return: ",answer,!
u saveio
q answer

Routine example5:

callback()
n value="date: "_$zd($h,2)
s value=value_$$cb^%srv("get string")
q value

Here client side calls server to read value of $$callbackˆexample5() or
call function. While function executes, it calls client back using $$cbˆ%srv("get
string"). This passes "get string" to client and waits responce.

On the client fires event handler OnCallback(connect,command) and
there client reads back the server

s value=$$Read^%cli(connect,"$zt($p($h,"","",2))")

Server receives Read command, evaluates expression and return value
of $zt(...).

After this client side make answer from the OnCallback handler

s answer=" time: "_value

and return it

q answer

After this server side receives responce to $$cbˆ%srv("get string") and
continue execution.

This data transfer mode can be recommended when server need to send
command to client or ask additional information. This mode works with
saving stack levels.

This event can be called in any context except ExecuteOutput subroutine
was called.

24 CHAPTER 3. APPLICATION INTERFACE

3.12 ExecuteOutput

Subroutine ExecuteOutput executes line of MUMPS commands on the
server like the Execute subroutine, but intercepts all output made by the
server side to current device until zero byte is reached.

It is special context when client does not recognize any control sequence
and all output pass to event handler of OnOutput. In this mode don’t call
GroupRead or Callback functionality.

Subroutine Execute instead of ExecuteOutput recognizes control se-
quences and while Execute works, all OnGroupRead and OnCallback events
will fire.

Chapter 4

Uninstallation

4.1 Cache

To remove MiniM Interconnect daemon stop it first:

%SYS>d stop^%zsrv

Next remove server side routine %srv.
To remove client side of MiniM InterConnect remove routine %cli.

4.2 GT.M

To remove MiniM Interconnect daemon stop it first:

GTM>d stop^%srv

Next remove server side routine %srv.
To remove client side of MiniM InterConnect remove routine %cli.

4.3 MiniM

To remove MiniM Interconnect daemon stop it first:

%SYS>d stop^%srv

Next check that MiniM InterConnect daemon is not in the start se-
quence in autostart.m script file.

And next routine %srv can be removed.

25

26 CHAPTER 4. UNINSTALLATION

And you need to know that this daemon in use by all MiniM Client
Tools, by MWA and by all other tools where used MiniM Server Connect.

Routine %srv by default replaces by upgrade process if you install new
version of MiniM over existing.

To remove client side of MiniM InterConnect remove routine %cli.

	Introduction
	Installation
	Cache'
	GT.M
	MiniM
	Examples

	Application Interface
	Variables
	Open
	Close
	Error
	Read
	Write
	Kill
	Execute
	OnGroupRead
	OnOutput
	OnCallback
	ExecuteOutput

	Uninstallation
	Cache
	GT.M
	MiniM

