
MiniM Database Server
Language Guide

Version 1.32
Eugene Karataev

mailto:support@minimdb.com
http://www.minimdb.com

May 9, 2022

2

Contents

1 Syntax 11
1.1 Overall review . 11
1.2 Commands . 12
1.3 Functions . 13
1.4 Operators . 14
1.5 Expressions . 14
1.6 Constants . 15
1.7 System variables . 16
1.8 Structured system variables 17
1.9 Local variables . 18
1.10 Global variables . 19
1.11 Postconditional expressions 20
1.12 Strings and numbers . 21
1.13 Subscripts . 23
1.14 Naked indicator . 24
1.15 Indirection . 25
1.16 Routines . 27
1.17 Labels . 29
1.18 Parameters passing . 31
1.19 Comments . 33
1.20 Locks . 34
1.21 Input-output devices . 35
1.22 Device options . 38
1.23 Device mnemonics . 38

2 Operators 41
2.1 Unary Plus (+) . 41
2.2 Addition (+) . 42
2.3 Unary Minus (-) . 42
2.4 Subtraction (-) . 43
2.5 Multiplication (*) . 44

3

4 CONTENTS

2.6 Division (/) . 44
2.7 Integer Divide (backslash) . 45
2.8 Exponentation (**) . 46
2.9 Modulo (#) . 46
2.10 Concatenation () . 47
2.11 Not (’) . 48
2.12 Equals (=) . 49
2.13 Greater (¿) . 50
2.14 Greater or Equal (¿=) . 50
2.15 Less (¡) . 51
2.16 Less or Equal (¡=) . 51
2.17 Contains ([) . 52
2.18 Follows (]) . 53
2.19 Follows or Equal (]=) . 53
2.20 Sorts After (]]) . 54
2.21 Sorts After or Equal (]]=) . 54
2.22 AND (&) . 55
2.23 Lazy AND (&&) . 55
2.24 OR (!) . 56
2.25 Lazy OR (||) . 57
2.26 XOR (!!) . 57
2.27 Pattern Matching (?) . 58
2.28 Hexadecimal (#) . 61

3 Commands 63
3.1 CLOSE . 63
3.2 DO . 65
3.3 ELSE . 67
3.4 FOR . 67
3.5 GOTO . 71
3.6 HALT . 72
3.7 HANG . 73
3.8 IF . 75
3.9 JOB . 77
3.10 KILL . 79
3.11 KSUBSCRIPTS . 81
3.12 KVALUE . 83
3.13 LOCK . 84
3.14 MERGE . 88
3.15 NEW . 90
3.16 OPEN . 94

CONTENTS 5

3.17 QUIT . 96
3.18 READ . 97
3.19 SET . 101
3.20 TCOMMIT . 112
3.21 TROLLBACK . 112
3.22 TSTART . 113
3.23 USE . 115
3.24 WRITE . 116
3.25 XECUTE . 120

4 Z - Commands 123
4.1 ZNEW . 123
4.2 ZNSPACE . 125
4.3 ZPRINT . 126
4.4 ZSYNC . 129
4.5 ZTRAP . 130
4.6 ZWRITE . 131
4.7 ZZDUMP . 133

5 Standard Functions 135
5.1 $ASCII . 135
5.2 $BIT . 136
5.3 $BITCOUNT . 136
5.4 $BITFIND . 137
5.5 $BITLOGIC . 138
5.6 $CHAR . 140
5.7 $DATA . 141
5.8 $EXTRACT . 143
5.9 $FIND . 144
5.10 $FNUMBER . 145
5.11 $GET . 147
5.12 $JUSTIFY . 148
5.13 $INCREMENT . 149
5.14 $LENGTH . 150
5.15 $LIST . 151
5.16 $LISTBUILD . 153
5.17 $LISTDATA . 155
5.18 $LISTFIND . 156
5.19 $LISTFROMSTRING . 158
5.20 $LISTGET . 159
5.21 $LISTLENGTH . 161

6 CONTENTS

5.22 $LISTSAME . 162
5.23 $LISTTOSTRING . 163
5.24 $LISTVALID . 164
5.25 $NAME . 165
5.26 $ORDER . 166
5.27 $PIECE . 169
5.28 $QLENGTH . 170
5.29 $QSUBSCRIPT . 171
5.30 $QUERY . 173
5.31 $RANDOM . 175
5.32 $REPLACE . 176
5.33 $REVERSE . 177
5.34 $SELECT . 178
5.35 $STACK . 179
5.36 $TEXT . 180
5.37 $TRANSLATE . 182
5.38 $VIEW . 183

5.38.1 $VIEW(”db”) . 183
5.38.2 $VIEW(”dev”) . 188
5.38.3 $VIEW(”err”) . 191
5.38.4 $VIEW(”file”) . 192
5.38.5 $VIEW(”jrnl”) . 196
5.38.6 $VIEW(”lock”) . 203
5.38.7 $VIEW(”log”) . 204
5.38.8 $VIEW(”perf”) . 204
5.38.9 $VIEW(”proc”) . 205
5.38.10$VIEW(”rou”) . 209

6 Z - Functions 211
6.1 $ZABS . 211
6.2 $ZARCCOS . 212
6.3 $ZARCSIN . 212
6.4 $ZARCTAN . 213
6.5 $ZBITAND . 213
6.6 $ZBITCAT . 214
6.7 $ZBITCOUNT . 214
6.8 $ZBITEXTRACT . 215
6.9 $ZBITFIND . 216
6.10 $ZBITGET . 217
6.11 $ZBITLEN . 217
6.12 $ZBITNOT . 218

CONTENTS 7

6.13 $ZBITOR . 218
6.14 $ZBITROT . 219
6.15 $ZBITSET . 220
6.16 $ZBITSTR . 221
6.17 $ZBITXOR . 221
6.18 $ZBOOLEAN . 222
6.19 $ZCOS . 224
6.20 $ZCOT . 225
6.21 $ZCRC . 225
6.22 $ZCSC . 227
6.23 $ZCONVERT . 227
6.24 $ZDATE . 229
6.25 $ZDATEH . 231
6.26 $ZDLL . 233
6.27 $ZEXP . 235
6.28 $ZLASCII . 235
6.29 $ZLCHAR . 236
6.30 $ZLCASE . 237
6.31 $ZLN . 237
6.32 $ZLOG . 238
6.33 $ZLOWER . 239
6.34 $ZPCREMATCH . 239
6.35 $ZPCREREPLACE . 240
6.36 $ZPCRESEARCH . 242
6.37 $ZPOWER . 243
6.38 $ZPREVIOUS . 244
6.39 $ZQASCII . 245
6.40 $ZQCHAR . 246
6.41 $ZQUOTE . 247
6.42 $ZSEC . 248
6.43 $ZSIN . 249
6.44 $ZSQR . 249
6.45 $ZTAN . 250
6.46 $ZTIME . 250
6.47 $ZTIMEH . 251
6.48 $ZUCASE . 252
6.49 $ZUPPER . 253
6.50 $ZVERSION . 253
6.51 $ZWASCII . 254
6.52 $ZWCHAR . 255

8 CONTENTS

7 System Variables 257
7.1 $DEVICE . 257
7.2 $HOROLOG . 258
7.3 $ECODE . 259
7.4 $ESTACK . 261
7.5 $ETRAP . 261
7.6 $IO . 262
7.7 $JOB . 263
7.8 $KEY . 264
7.9 $PRINCIPAL . 265
7.10 $QUIT . 265
7.11 $REFERENCE . 266
7.12 $STACK . 267
7.13 $STORAGE . 268
7.14 $SYSTEM . 269
7.15 $TEST . 269
7.16 $TLEVEL . 272
7.17 $X . 272
7.18 $Y . 273

8 System Z - Variables 275
8.1 $ZCHILD . 275
8.2 $ZEOF . 275
8.3 $ZERROR . 276
8.4 $ZGUID . 277
8.5 $ZHOROLOG . 278
8.6 $ZNAME . 278
8.7 $ZNSPACE . 279
8.8 $ZPARENT . 279
8.9 $ZPI . 280
8.10 $ZREFERENCE . 280
8.11 $ZTIMESTAMP . 282
8.12 $ZTIMEZONE . 282
8.13 $ZTRAP . 283
8.14 $ZVERSION . 284

9 Structured System Variables 287
9.1 $DEVICE . 287
9.2 $GLOBAL . 288
9.3 $JOB . 291
9.4 $LOCK . 292

CONTENTS 9

9.5 $ROUTINE . 296

10 Device Parameters 297
10.1 COM . 297
10.2 CON . 304
10.3 DLL . 308
10.4 FILE . 308
10.5 MEM . 313
10.6 NULL . 316
10.7 PIPE . 317
10.8 PRN . 320
10.9 STD . 324
10.10STORE . 326
10.11TCP . 328
10.12TNT . 331

11 Error Handling 335
11.1 Error handling tools . 335
11.2 Error handler scheme . 336
11.3 Error generation . 337

12 Regular Expressions 339
12.1 Regular Expressions Options 339
12.2 Regular Expressions Syntax 342

13 Errors List 363
13.1 MDC MUMPS standard errors list 363
13.2 MiniM errors list . 365
13.3 MiniM system errors list . 372

10 CONTENTS

Chapter 1

Syntax

1.1 Overall review

MiniM Database Server conforms to current MUMPS standard and hold
MDC recommendations.

MiniM Database Server is a multiprocess server with caching datafile
pages and routine’s bytecodes.

Executable part of MiniM is an interpreter of compiler type. Interpreter
executes compiled bytecode. Bytecode is created once on routine compila-
tion. Interpreter use temporary bytecode too even for xecute command and
for all indirection forms.

MiniM Database Server use extended syntax in the manner of MUMPS
standard for extensions provided for MUMPS vendors.

MiniM supports transactions and data fault protection using combined
journaling and before image writing. MiniM protect not datafile, but logical
data in total of datafile, journal and before image journal.

In addition to standard MUMPS commands and functions MiniM Database
Server implement several extensions such as:

• new command with initialization

• $qsubscript() function with assignment

• hexadecimal numbers

• read and kill from some structured system variables

• lazy logic operators

11

12 CHAPTER 1. SYNTAX

• list functions

• transactional bit functions

• external functions in dll

• external device types in dll

• and others

Also MiniM Database Server supports compatibility with some other
MUMPS systems in syntax and in data structures and formats to imple-
ment extended application portability.

1.2 Commands

All actions been made by MiniM processes, are commands execution. Com-
mon command structure is a command keyword (what action need to per-
form), after command can be optional postconditional expression delimited
by colon and optional argument delimited by space. Command can be ap-
plied to one or more arguments delimited by comma. Commads applies to
arguments in left-to-right order. Only 3 commands cannot be specified with
postconditional expressions - for, if and else because this commands are ap-
plied to all following commands in line.

Commands keywords are cese insensitive and can be abbreviated, in most
cases to one symbol.

Command can be with argument or without argument, in second case this
form is argumentless form of command and command applies not to specified
argument, but to common process context. For example, the kill command
with argument remove only specified variable but the kill command without
arguments remove all available local variables. Or, for example, command
lock with argument create locking of specified variable, but command lock
without arguments removes all avalable locks performed by current process.

Unlike of most other programming languages, MUMPS command is a
minimal possible part of execution.

Full list of commands supported by MiniM Database Server is described
in current document.

One line of code can contain zero, one or more commands followed one
after another and execution control follows by command sequence in left-to-
right order one by one.

1.3. FUNCTIONS 13

It is not supported execute only argument or expression without command
specification.

1.3 Functions

Functions are special language elements which operates optional arguments
and return values.

Built-in (or system) functions starts with special symbol $ with followed
function name. Most system function names can be abbreviated. System
functions are case insensitive.

User defined functions are created by programmer as a routine part. User
functions can accept optional arguments. User functions starts with special
symbols $$ with followed label name in routine contains this function. After
label name foolows special symbol (ˆ), routine name and arguments within
parenthesis. Routine name can be omitted, this mean function is in the
current routine.

If user function have not arguments and defined without parenthesis, this
function must be called without arguments. This particular case have spacial
name user defined variable accessible only to read.

User defined functions are case sensitive.

For each built-in system function MiniM compiler generates appropriate
bytecode to call this function and for user defined function compiler generates
code to call cpesified label, routine name, routine database and argument
passing.

User defined functions can be changed any time but internal system func-
tions defined by the MUMPS standard and MiniM specification.

In addition to MUMPS standard functions MiniM implements several ex-
tended built-in functions, which in most cases starts with symbol $ and sym-
bol Z (system z-functions). Internal extended functions are case insensitive
and in most cases can be abbreviated. Abbreviation supported is described
in each function documentation.

On user function execution special system variable $test is stacked and
protected from change on prior stack level. See reference to system variable
$test.

14 CHAPTER 1. SYNTAX

1.4 Operators

Operators are special language elements, have one or two arguments (operands)
and returns value evaluated dependent of operator type and over operands.
Result is placed instead of operator and operands.

Operators can be used in any place when allowed expression usage.

Operators can be classified as arithmetical, logical and string operators,
or classigied by programmers discretion, because official operators grouping
is absent.

Operators appear as a special reserved symbol. If operator have only
one argument, it is an unary operator and is applied to right operand. If
operator have two arguments, it is binary operator and applies to left and
right operand.

Between operator symbol and operands no any spaces are allowed.

Operator arguments, in one part, can be any expression too, including
other operators with arguments.

Operators in MiniM cannot be overloaded or redefined.

Operator examples:

Arithmetic addition: a+b

Multiplication: a*b

Negate a number: -a

Logical not: ’a

1.5 Expressions

Expression is a special language part, which specify the rule how to evaluate
value. Expression result in MUMPS language is a string. Expressions are
constructed using operators, constants, variables and functions calls.

Expressions does not limited by complexity.

In MUMPS language unlike of other languages expressions evaluates in
left-to-right order without priorities if evaluating order does not directly spec-
ified using parenthesis.

If expression is an operator result, the operator arguments can be expres-
sions too and evaluates in left-to-right order.

1.6. CONSTANTS 15

If expression contains any name indirection form, this name uncovers and
evaluates.

Variable subscripts also can be expressions and on variable evaluation
subscripts are evaluated in left-to-right order too.

Expressions examples:

A+B*2

A+(B*2)

$tr(input," ")_":"_$j

^pos($j,"left")+offset

Expression result always is a string, but operators can use strings as a
numbers or, vice versa, expression can be evaluated as arithmetic operation
but result can be used as a character sequence.

1.6 Constants

Constants are the special language elements, which defines values as is.

Constants can be specified as string, number and hexadecimal constants.
This is different forms how to specify byte sequence. Real values meaning
are always context-dependent.

If constant is a string constant, symbols of string must be embraced to
double quotes (”). It is supposed string contains symbols from open quote
to closing quote and does not contain embracing quotes. If the quote symbol
(”) must be placed into string constant, it must be doubled. Other symbols
are writes as is except nonprintable characters. String can contain a tab
character too. Example:

s a="string"

s a="string ""quoted"""

Numerical constants can be specified as integers or floating point num-
bers. Decimal separator is a decimal point and exponent of number must be
specified in a science notation with ”e” or ”E” exponent separator. Example:

s a=1234

s a=123.456e+78

16 CHAPTER 1. SYNTAX

Hexadecimal constants are specified with hexadecimal sign(#) with fol-
lowing hexadecimal characters case insensitive. Example:

s a=#123456

s a=#CAFE

s a=#BEEF

When routine is compiled, constants values are placed into special byte-
code section of constants and used repeatedly. All places in routine with
the same constant or names refers to the same place in bytecode constant
section. This allow to decrease bytecode size.

Constants usage is an expression usage and constants can be used in
any place where are allowed expressions. Constants cannot be assigned and
passed by reference.

1.7 System variables

System (or special) variables are the special language elements which returns
special or system information, have no arguments and defined by the MUMPS
standard or added as MiniM extended variable.

System variables return in most cases special information about process
state or any parts of process state.

System variables starts with symbol $ and have no arguments.

Extended MiniM system variables starts with symbol $ and followed sym-
bol z.

System variables are case insensitive and in most cases can be abbrevi-
ated. For each system variable is specified possible abbreviation.

System variables are exists in any time process exists and cannot be
removed. Values of system variables evaluates on call from internal process
data structures.

Some system variables can be changed by direct assignment, and some
variables are for read only. System variables can be used in any place where
expressions are possible.

In dependent of system variable type this variable can change value indi-
rectly, on some conditions was changed.

System variables examples:

1.8. STRUCTURED SYSTEM VARIABLES 17

Return current job (process) number: $j

Return or assign the caret position: $x, $y

Return name of last global reference: $zr

Create and return new GUID: $zguid

1.8 Structured system variables

Structured system variables are the special language elements, which are
used as a special subscripted variables but does not affect any storable data.
All structures and subscript values are calculated on the fly. This virtual
variables exposes information about available jobs, globals, locking objects
and others.

Structured system variables have special predefined names and starts with
special symbols ˆ$.

Structured system variables names are case insensitive and can be abbre-
viated to one symbol after ˆ$.

Structured system variables are the special virtual variables and sub-
scripts are exists if exists special appropriate objects.

This variables can be used as an arguments of system functions $order(),
$query(), $data() and in special cases can be evaluated as value and be used
as a kill command argument.

For each supported structured system variable in the current documen-
tation is listed all supported operations and this operations meaning.

Values of structured system variables subscripts are dependent of variable
type, for example subscripts of ˆ$ROUTINE are routine names, ˆ$LOCK are
locked variables and ˆ$JOB - available job numbers.

If structured system variables are used as a $order() and $query() func-
tions, this allow to get list of available system elements, function $data() can
check element exists, $get() can evaluate value of element and kill command
can remove selected element. But all this operations are dependent of ssvn
type, for example, removing from ˆ$LOCK removes lock selected in first sub-
script and removing from ˆ$JOB terminates process selected by number in
first subscript.

Since version 1.32 on calls to unsupported SSVN name MiniM generates
error M60 (SSVN NAME), and prior versions generates syntax error (SYN-
TAX).

18 CHAPTER 1. SYNTAX

1.9 Local variables

Local variables are special language elements, it is automatically creted on
assignment variables be a parts of current process only and are unaccessible
from other processes.

Local variables does not stored on the disk.

Local variables names can starts from the special % symbol or English
letter with followed optional English letter or numeral.

Local variable names are case sensitive.

Local variables can be with or without subscripts and each different name
have own separate value.

Local variables have no declaration and are automatically created on first
assignment.

Local variables can be created by commands set, for or read at the first
assignment any value. Local variables are removed by the kill command and
stacked local variables automatically are removed by the quit command if
variable has been newed by the new command on this stack level.

Process can have different local variables with the same name if this
variabled was newed by the new command on different stack levels. In this
case process use only one variable with this name, nearest visible by stack.

MiniM process supports memory limiting for locals storage to prevent
erroneous memory allocation. Common available local storage returns special
system variable $storage.

Unlike of other variable types local unsubscripted variables can be passed
as argument by reference. In this case formal argument as local variable is
a synonym of local variable passed as actual argument. In this case local
variable passed can be changed from function including subscripts.

Value of local variable in MiniM Database Server can be up to 32K.

Examples of local variables:

%

%X

Aks

w67

height

pos(12,"start")

1.10. GLOBAL VARIABLES 19

1.10 Global variables

Global variables (or globals) are the special language elements, stored vari-
ables.

Globals exists after process created terminates and are accessible by all
other processes.

Global’s data and names are stored in special data files.

MiniM optimize global access and use special data caching algorithms.

All global change operations are journaled, recorded as special records in
a journal file. Journal informetion is used by transaction rollback command
and to restore database from backup.

Global name starts from special circumflex symbol (ˆ), with following
optional database name embraced into vertical bars and with followed global
name. If global name have subscripts, subscripts must be specified into
parenthesys after global name and be comma delimited. On each subscript
must be specified expression to evaluate subscript value. Subscripts cannot
be omitted. Database name can be omitted, this mean global in current
database.

Globals in database have no any declaration and are created on the first
set command. After removing last available data in the global this global no
more exists.

Global anmes are case sensitive and database names not. Global name
must be starts with special symbol % or with English letter with followed
optional English letter or numerals.

Examples:

^GG

^|"user"|GG

^|"user"|GG($j)

^|"user"|GG("name",12)

For compatibility with other MUMPS implementations and with available
M software MiniM supports database specification in square brackets, not
only in vertical bars.

Examples:

20 CHAPTER 1. SYNTAX

^["user"]GG

^["user"]GG($j)

^["user"]GG("name",12)

If system function must return global name with database name, function
return database name in canonical form - in upper case and embraced into
vertial bars.

MiniM supports special rules for mapping globals data: 1) globals with
names starts from % phisically are stored in the ”%sys” database, 2) global
names starts with ”mtemp” phisically are stored in the ”temp” database and
3) routines starts with % phisically are stored in the ”%sys” database.

MiniMono difference

MiniM Embedded Edition supports only one %SYS database and all glob-
als are stored in this one database.

1.11 Postconditional expressions

Postconditional expression is an expression evaluated befor command execu-
tion to check need this command executed or not. Expression evaluated as a
number and compares with 0. Id result is 0, command does not exeuted and
vice versa.

If command have several command arguments, postconditional expressin
applies to all this arguments. I. e. command applies to arguments in the
left-to-right order or control passed to the next command.

Postconditional checking does not affect to system variable $test unlike
of the if command and postconditional expression acts only to one command
and the if command acts to all followed commands in the line.

Postconditional expression writes after command keyword and delimited
by colon, for example:

cmd:postcond cmdarg1,cmdarg2

Here postcond is a postconditional argument, cmd is a command keyword
and cmdarg are the command arguments.

Although postconditional argument writes after command keyword, this
value evaluates before command execution.

1.12. STRINGS AND NUMBERS 21

Even if the postconditional expression evaluates as a 0 and command does
not executes, expression evaluation can have a side effects.

Several commands such as if, else and for cannot have a postconditional
expressions because this commands applies not to one argument, but to all
followed commands in the line.

Some commands, for example do and goto, can have postconditional ex-
pressions for an arguments too. If argument is specified without postcondi-
tional expression, if command executes, this argument executes uncondition-
ally. Otherwise if argument specified with own postconditional expression,
this expression evaluates first to check need this argument be used or not.
If been specified both postconditional expression for command and for an
argument, the command postconditional expression evaluates first. If com-
mand does not executed, the argument’s postconditional expression does not
evaluates too. For example:

do:pc label1:pc1,label2:pc2

Here if expression pc evaluates as 0, all arguments and argument’s post-
conditionals are ignored. Otherwise next evaluates postconditional expres-
sion pc1 and if it is nonzero, command applies to argument label1. Otherwise
evaluates a postconditional expression pc2 and if it is nonzero, command ap-
plies to argument label2. Otherwise control passes to the next command.

Argument postconditional expressions can have side effects too and does
not affect to system variable $test.

1.12 Strings and numbers

MiniM Database Server conforms to current MUMPS standard to use strings
and numbers. In most cases all values in MUMPS programs are strings or a
byte sequence. And values can be used in special context as a numbers. In
this case string is used as number representation.

If process need to use value as a number, process use only first string
part that syntactically conforms to a number. String to a number casting
can be arithmetic and canonic. Arithmetic casting always have a number
as a casting result, and canonic casting have a number as a result only if
string is canonical number representation. Canonical number representation
is defined by several rules: no leading signs except optional minus, no leading
and trailing zeroes, and after number no any other symbols. Arithmetic

22 CHAPTER 1. SYNTAX

casting accept all leading signs, leading and trailing zeroes but all symbols
not in number template are ignored. And, for arithmetic casting, if any
number’s symbols not found, result is 0.

Arithmetic casting is made by operation or function context if operator
or function use value of an argument as a number.

Canonical casting is used by name construction from subscripts values.
If subscript value is a number in a canonical form, this subscript is used and
sorts as a number, otherwise is used and sorts as a string.

Some examples of canonical string to number casting can be demonstrated
using one (in arithmetic meaning) number:

TEMP>s a("0.1")="0.1"

TEMP>s a("0.10")="0.10"

TEMP>s a(".1")=".1"

TEMP>s a(".10")=".10"

TEMP>w

a(.1)=".1"

a(".10")=".10"

a("0.1")="0.1"

a("0.10")="0.10"

Here only variable a(.1) have a numeric subscript, other variables have a
string subscripts.

On the other hand, if operator or a function use value as a string but
value is got in arithmetic operation, process cast number to a string. In
number to string casting is used canonical representation of a number. In
result value have not leading plus sign, leading and trailing zeroes and have
a normilized mantissa if need. Example of this casting:

TEMP>w 0.2*3_4

.64

TEMP>w $l(0.2*3)

2

1.13. SUBSCRIPTS 23

1.13 Subscripts

In the MUMPS language local, global and structured system variables can
be subscripted and create tree-like structures. Each node of this tree defined
by name and full subscruipts set in specified order. Each this name can have
separate value. Different names or different subscripted names have separate
own values.

In MUMPS language supposed that if full subscripted name have no data,
this name does not exists, but can have child names. Examples:

a(12,34)="456789"

^GL78("date")="78,89"

^GL78("date","oper",25)="127.0.0.1^80^4523"

Global or local subscripted names can have any values or byte sequences
up to 32K length. Subscripts can have any values, strings or numbers. Com-
mon subscripts count can be up to 63 and full subscripted name can be up
to 255 bytes length.

MUMPS have several built-in functions to use subscripted names in dif-
ferent ways: enumerate available subscripts values and names ($order() and
$query()), check name and subscripts have data ($data(reference)), function
to split full subscripted name to parts ($qs(name,pos)) and function to con-
struct name from parts (set $qs(name,pos) = value).

MiniM implements common rule to sort subscript values. Much less of all
is an empty string, next follow numbers in arithmetic order and next follow
all other strings in alpha sorting defined in special collation file.

Current collation file is a special .N file in the /nat subdirectory. Con-
figuration file minim.ini must contains this file name in section Server, key
Locale. Collation file must be specified without extension.

Collation table applies by all processes in a common to a global names,
a local names, structured system variables and to special operator ”follows
after”. On data extraction processes use collation tables with an available
variable structures created on data insertion.

On deletion global or local name by standard kill command MiniM re-
moves the specified name and all subscripted names independent of count of
child names are available.

24 CHAPTER 1. SYNTAX

1.14 Naked indicator

Naked reference (or naked indicator) is a special case of global name last
called. For each system function who can call global name been defined side
effect to change value of naked indicator. For example, function $data()
changed naked indicator even if global name in argument does not have data
and does not exists.

Each process have own value of naked indicator and on process start
current naked indicator is an empty string.

If process change current database, value of naked indicator changes to
an empty string.

Each process can evaluate own value of naked indicator using special
system variable $zreference.

Process can change value of naked indicator by assigning system variable
$zreference with the set command. New value can be an empty string or any
valid global name. MiniM check syntsx of value assigned and if it is not a
valid global name, generates an error <SYNTAX>.

Value of naked indicator is used by special syntax element, containing of
circumflex and followed subscripts in parenthesis. For example:

^("date")

^(456,$h)

Naked indicator can be used in any place when global variable name is
allowed.

On naked indicator usage real global name creates at real usage. It is
much important - naked indicator translates into real global nmae not in the
evaluating order, but in usage moment. For example, if naked indicator is
assigned from other global variable by code

set ^(12)=^G(34)

first of all process read value from global ˆG(34), at this moment value of
naked indicator is changed, and next the set command use naked indicator
to construct full global name to assign to. Here new name to assign is
derived from previously used (ˆG in this case), but not existing before the
set command execution.

On naked indicator using result global name is constructed by the rule:
last subscript of naked indicator is replaced to first specified subscript and
other subscripts are appended. For example:

1.15. INDIRECTION 25

TEMP>s $zr=$na(^a(12))

TEMP>w $na(^(34,56))

^a(34,56)

On naked indicator usage can be generated an error <NAKED> in the
two cases: 1) value of naked indicator is an empty string and 2) value of
naked indicator is global name without subscripts.

Naked indicator usage on the one hand can make code very hard to read
and understand and on the other hand can simplify and make very nute to
read and understand. Moreover, if naked indicator is used, need to garantee
global calls order after code changed.

1.15 Indirection

Indirection is a special language element allows to use name, part of name
or other syntax element evaluated at run time.

Indirection can make code unreadable and vise versa more readable and
pure in dependent of usage case.

Indirection in the MUMPS language can be the following:

• name indirection

• pattern indirection

• command argument indirection

• subscript indirection

• $text() function indirection

If process on execution must use indirection, argument of indirection eval-
uates as a string and result is used as substituted into executed place instead
of indirection.

Name indirection

Name indirection can be used in any place where is allowed variable name.
Evaluated expression is used instead the variable name, for example:

26 CHAPTER 1. SYNTAX

USER>s abc=123,name="abc",var=@name

USER>w

abc=123

name="abc"

var=123

Here been used name indirection in expression @name. Value of expres-
sion has been evaluated as a ”abc” string and this string has been used
instead of variable name.

In name indirection value evaluated can contain variable name with sub-
scripts.

Pattern indirection

When pattern indirection been used, evaluated expression is used as a
pattern content. For example:

s pat="1N"

w 3?@pat

Here evaluates expression pat and result value is used instead pattern.
Really executes pattern matching 3?1N.

Command argument indirection

When used command argument indirection evaluated expression is used
as command argument or arguments comma delimited. Command will be
applied to this argument or arguments, for example:

USER>s value="a=123",@value

USER>w

a=123

value="a=123"

Here the set command is used with indirection form and command applies
to result of expression as ”a=123” and really process execute as command s
a=123.

Subscript indirection

When subscript indirection is used, evaluated expression is used as a name
with possible subscripts and to this name appends one or more specified
subscripts. Result is used as a real name. For example:

1.16. ROUTINES 27

USER>s name="a(1,2,3)",@name@(4,5,6)=123456

USER>w

a(1,2,3,4,5,6)=123456

name="a(1,2,3)"

Here evaluates the name expression as name with 3 subscripts and to this
name appends again 3 subscripts and result name is used.

$text() function indirection

When $text() function indirection is used, argument can be specified in-
directly as full argument or as any part of argument. For example:

s label="LABEL^RTN"

w $text(@label)

w $text(@$p(label,"^",1)^@$p(label,"^",2))

w $text(@$p(label,"^",1)^RTN)

Here in case 1 is used full argument indirection, in case 2 is used separate
label and routine name indirection and in case 3 is used label indirection
with direct routine name specification.

1.16 Routines

Routines are the special database element, which contains lines of code with
commands.

Routine texts consists of line of code with commands and in first symbols
must be whitespace or a label.

Routines are saves, edits, compiles, exports or imports entirely, as one
object.

MiniM Database Server is an interpreter of compiler type. Process can
execute only compiled bytecode. On top command line execution entire
line is compiled into temporary bytecode and executes. On routine execu-
tion process executes appropriate part of this routine bytecode. For routien
execution the routine source code does not required except special $text()
function usage cases.

Routine source text is stored in the global ˆROUTINE in each database.
Compiled bytecode is stored in the global ˆrOBJ in the same database.

28 CHAPTER 1. SYNTAX

For routine names there implemented special name mapping rules for
routines starts with symbol %. This routines phisically stored in the ”%SYS”
database and visible and can be used and executed by any process from any
database.

Routine name can starts with symbol % or an English letter with fol-
lowed English letter or a numeral. Routine name must be up to 31 symbols
length. Routine names are case sensitive and routines with different names
are different routines.

Label in the routine line can be used as subroutine name. To this label
(or with offset from) there is possible to pass control by the goto command
or call as a function with arguments passing.

Labels names are case sensitive and must have different names within one
routine.

In routine can be used special language element whicj cannot be used in
ordinal command line - block syntax. If line starts with dot after whitespace
(after optional label without arguments), one or more this lines followed by
each other are block of code. This block of code is an internal unnamed
subroutine and can be executed by the do command. On block execution
process creates next stack level and lines executes if have the same start
dot count. This blocks can be included into each other and included block
must have dots by one more than parent block. Block’s dots can be with or
without whitespaces delimited. For example:

label(param)

new i

for i=1:1:param do quit:i>5

. write i,!

quit

Here argumentless do command executes subroutine as block of code as
lines specified with dots. If after line of block execution next line have less
then need dots, it is equal to execute hidden argumentless quit command
and control returns from this unnamed subroutine. And in the line with
argumentless do command after this do command can be other commands.

To call label as a subroutine it must be specified as label name with
circumflex and routine name. If database name of routine does not specified,
it is used current database. Database name can be specified embraced into
vertical bars:

1.17. LABELS 29

^|DbName|RoutineName,

where dbname - expression evaluated as a string. Database names are used
case insensitive. In simple cases can be used only constant:

do ^|"MINIM"|Sample()

Label names are written before the circumflex symbol:

LabelName^|DbName|RoutineName

If the label name is omitted, this mean label in first line of routine. Be-
tween label name and circumflex can be specified a plus sign with expression
with offset (mandatory positive value):

LabelName+Offset^|DbName|RoutineName,

where offset - any expression, evaluated as an integer and must be a positive.

If label is used with offset, there is impossible to use and pass arguments.

After routine compilation compiler creates bytecode and this bytecode
is stored in the ˆrOBJ global. Bytecode is stored and used as single byte
sequence and cannot be greater than 32K length.

If programmer got this bytecode limit, there is possible to split routine’s
subroutines to several routines.

On bytecode execution MiniM Database Server uses special caching to
optimize bytecode access time. One bytecode can be used by all processes in
the current MiniM instance.

MiniMono difference

MiniM Embedded Edition supports only one %SYS database and all rou-
tines and compiled bytecode are stored in this one database.

1.17 Labels

Labels are special symbol sequences with label name in routine source text.
Label starts from first symbol in the line of code and can starts with symbol
%, English letter of numeral with followed English letters or numerals. Each
label in the routine source text must differs. Label names are used case
sensitive.

30 CHAPTER 1. SYNTAX

Label can be with or without arguments embraced in parenthesis after
label name. After label name without arguments or after parenthesis must be
at least one whitespace symbol. Arguments must be delimited with comma.

Label can be used by the do command to call label as subroutine, by
call as function with return value using $$ syntax and for goto command to
pass control to line with label. For goto command label must be without
arguments.

Routine example with labels:

FUNC(a,b) q a+b*2 ; 1

%NAME q $p($zv," ") ; 2

Here in first case is label FUNC with two argumenrs a and b. this label
can be called as function $$FUNC(), with passing 0, 1 or 2 arguments values.
In the second case is label %NAME without arguments and can be called
without arguments as $$%NAME.

On the same line of code with label can be commands and before first
command must be at least one whitespace symbol. On label calls as function,
by do or goto commands process starts execution from first command followed
after label or after label arguments defined.

How label has been called is defined on the call side, as subroutine or as
a function. Subroutine called can determine what type of call been made
using system variable $quit. If call side wait return, subroutine must return
value using argumented quit command, otherwise simply return execution
using argumentless quit command.

At the call side after label name can be specified offset from label and
routine name containing this label. If label called with arguments or as
function, offset usage is impossible. Label name, offset, routine nmae can
be omitted, if other parts are enough to determina line of code. If routine
name is omitted, this mean currently executed routine, if offset is omitted
(in the most cases) this mean no offset, if label name is omitted, this mean
first available line of routine usage.

Examples:

do LABEL^RTN ; 1

goto LABEL+3^RTN ; 2

g 12+4 ; 3

do ^RTN ; 4

w $$FUNC^RTN($h,ver) ; 5

1.18. PARAMETERS PASSING 31

Here in case 1 called subroutine without arguments passing in routine
RTN and label LABEL. In case 2 made goto command to 3-rd line after
label LABEL in routine RTN. In case 3 program goes to 4-th line after label
12 in current routine. In case 4 program call as subroutine first line of routine
RTN. In case 5 program call as function label FUNC in routine RTN with
passing two arguments.

If does not specified label and offset, process pass control to first line of
routine.

On labels call label indirection can be used. Indirection can be applied
to any part of full label reference. If label name is stored in variable label
and routine name in variable rtn, the previous samples can be writen as:

do @label^@rtn ; 1

goto @label+3^@rtn ; 2

g @label+4 ; 3

do ^@rtn ; 4

w $$@label^@rtn($h,ver) ; 5

1.18 Parameters passing

When parameters passed to a label each actual argument matches to a formal
parameter inside subroutine or a function.

As as actual arguments can be used expression results, local variables
passing by reference or actual argument can be skipped. If argument is a
local variable by reference, it is not allowed to use subscripted name.

Count of actual argument and count of formal parameters can be different.
Formal parameters matches to actual argument by position in left-to-right
order. If actual arguments been passed less then accepted format parameters,
other parameters have undefined values.

Formal parameters are unsubscripted local variables, which got value or
be a synonym of passed by reference variable and exists on this stack level.
On leaving current stack level this local variables are lost.

If actual argument is skipped, appropriate formal parameter got unde-
fined value.

MiniM Database Server implements two extensions for MUMPS standard:
1) if formal parameter is undefined after matching, it can get special value

32 CHAPTER 1. SYNTAX

by default and 2) label can accept variable-lenght arguments into one format
parameter.

Automatic assignment to undefined parameter

If formal parameter got undefined value after parameters matching, it
can be specified what value need to be assigned to this parameter by default.
After parameter name must be the equal sign (”=”) with followed constant
to assign.

Let it be the subroutine:

LABEL(v=123)

q v

This subroutine can be called as:

$$LABEL() ; 1

$$LABEL(2) ; 2

$$LABEL(3,8) ; 3

Here in case 1 actual argument does not passed and formal parameter v
got undefined value, but value by default is specified and variable v got the
value of constant 123. In case 2 formal parameter accept passed value of
2. In case 3 passed more actual arguments then accepted and function call
generate an error <PARAMETER>.

Variable length arguments

If label must accept unknown arguments count, label can declare last
formal parameter with 3 dots:

LABEL(p1,params...)

In this case when formal parameters matched to actual arguments, pa-
rameter params accept count of arguments since 2 and more and subscripted
values of params accept the values of arguments been passed. Subscripts
counts from value 1 and matched to actual arguments in left-to-right order.
If there been skipped one or more arguments, appropriate subscripted values
will not have values (undefined value).

For example, let it be a subroutine:

LABEL(params...)

zw params

q params

1.19. COMMENTS 33

And, we can get several variabts how to call and pass arguments:

USER>w $$LABEL^test(1)

params=1

params(1)=1

1

USER>w $$LABEL^test(1,2)

params=2

params(1)=1

params(2)=2

2

USER>w $$LABEL^test("we",2)

params=2

params(1)="we"

params(2)=2

2

USER>w $$LABEL^test(,2)

params=2

params(2)=2

2

Caution: two additional MiniM extensions are not a part of MUMPS
standard and programmers must check have the target M implementation
compatible parameters passing or not.

1.19 Comments

Comment is a part of line of code from comment symbol (;) to the end of
line.

Before comment symbol in line of code must be at least one whitespace
symbol, for example space or tab symbol.

Comment can be placed in any part of line of code where can be command
keyword.

On execution MiniM threats comment as end of line.

All characters after comment symbol to end of line are ignored on execu-
tion.

If comment starts from comment symbol with following comment symbol
(;;), this line of code is stored in bytecode and later is accessible by the

34 CHAPTER 1. SYNTAX

$text() function even if source of routine is not accessible. In this case size
of bytecode is increased to store entire line.

Comment can be used in routine’s line of code as such as in xecute argu-
ment, and in this case argument can starts from comment symbol without
whitespace sequence. If comment is present in xecute argument, all argument
after comment symbol is ignored.

1.20 Locks

Lo0cks are special internal server objects for process synchronization. Lock
objects can be created and checked to existing. Lock objects have names the
same as global and local variables.

Locking is made by special lock command. Command have as an argu-
ment local or global variable name and locking method.

For locking objects name specified does not required or used. This vari-
able can exist and no exist and this variable access does not blocked.

MiniM use several rules for locking objects. Different processes cannot
lock in one time the same names or names which are in parent-child hier-
archical relation. But different processes can lock names with difference at
least in one subscript value. For example, if one process lock name a(12,34),
second process cannot lock name a(12,34) and names a and a(12) and names
a(12,34,any subscripts). But second process can lock names which are dif-
fers by any subscript, for example last subscript: a(12,45), a(12,67) or a(15)
because this name have not any parent-child relation with lock made as
a(12,34).

All locking objects are internal server objects and are visible by all pro-
cesses but owned by only one process made locking. After process terminates
all locking objects been owned by this process are lost. If process terminates
unexpectedly, locking objects are removed by special guardian process after
this guardian rollback database changes made.

All available locking objects existing on this MiniM instance made by any
process are listed in special structured system variable ˆ$L[OCK]. Caution:
getting full locking list can take a time and locking objects can be created
or removed within this time because MiniM is a multiprocess server and
processes are executed concurrently.

Each locking object have own locking counter. If locking has been made
first time, locking counter sets to value 1. Next time process can obtain incre-
mental locking with the same name and locking counter is increased by one

1.21. INPUT-OUTPUT DEVICES 35

on each incremental locking. Process also can use decremental unlocking and
locking counter decrements by one. If locking counter still equal 0, locking
object removes from locks entirely. Each locking object have process number
who is an owner of this lock and structured system variable ˆ$L[OCK] return
information about who is lock owner and about locking counter.

Locking can be made by special mathod, to wait list of names. In this
case process wait possibility to lock all listed names and make lock for entire
names list. If at least one name cannot be locked, no names from list been
locked and process still wait.

Locking can be made using optional timeout specification. If timeout does
not used, process can wait locking name or names infinitely. If timeout is
present, process wait only whithin specified time and in timeout is expired,
lock command return control to next command. If lock timeout has been
specified, process sets special system variable $test to value 1 if lock created
successfully or to 0 if locking does not made. Program can check this variable
after lock command to determine been lock successful or not.

Locking is a MUMPS standard part and required to correct concurrent
access to shared objects such as globals. Caution: locks used only for access
synchronization, not for objects blocking.

MiniM Database Server extend standard MUMPS locking mechanism and
allow to read variable ˆ$L[OCK] to get information about lock owner and
locking counter and allow to kill from the ˆ$L[OCK] variable to remove lock-
ing object independently from real locking owner. This allow to remove the
deadlock state manually.

1.21 Input-output devices

MiniM Database Server supports input-output device model as specified in
MUMPS standard. Each process can open and use several devices and own
at the same time. Unlike of other systems MiniM process is owner only
for device been opened in this process and cannot use devices opened by
other process. On process closing all devices been opened by this process
automatically closed.

Devices are identified by device identification string. Each device have
case-sensitive device name. Common device name consists of:

|DeviceType|device-type dependent string

36 CHAPTER 1. SYNTAX

All open, use and close use device identification strings with possible
optional device options.

MiniM Database Server implemets several device type as built-in and
can accept user-defined device types from external dll. For example, some of
built-in device types:

CON Process interact using standard Windows console win-
dow.

FILE Input-output to file of file system.
NULL Null device, all output losts and all input return empty

data immediately.
PIPE Channel to interact with child console Windows process.
STD Standard input-output with redirection and for batch

mode.
TCP Input-output using TCP/IP sockets.
TNT Interaction over TCP with telnet clients.

Device name string after device type specify device name to distinquish
from other possible devices with the same type and this part can contain
some device details. For example, for FILE device it is file name, for PIPE
it is operating system command with parameters and for TCP it is server
name and port number.

Some device types can be created only automatically on process start, it
is CON, TNT and STD devices and automatic device creation is dependent
from process run conditions.

Some device types are interactive devices and support keyboard input in-
directly or over remote client (STD, CON and TNT devices). For interactive
devices TNT and CON MiniM support true caret positioning and extended
string input mode with built-in string editor.

One of devices of process creates automatically on process start and still
active all time process exists. For example, if process has been run using the
job command, process have by default NULL device and if process has been
run directly as minim.exe, default device is a CON device. This automatically
created device cannot be closed until process terminates and have special
name - principal device. Device identification string of principal device return
special system variable $p[rincipal].

In according of MUMPS standard, all input and output are made using
current device. Only one of opened by process devices can be current device.

1.21. INPUT-OUTPUT DEVICES 37

To make device current must be used the use command and device still
current until next use command change current device. Device identification
string of current device return special system variable $i[o].

For program compatibility with other MUMPS systems MiniM Database
Server supports pseudodevice 0. Value 0 can be used as device identification
string for use command to call principal device. And command use 0 is
synonym for use $p.

On closing device which is current and is not principal device, MiniM
closes this device and make current default principal device. There is impos-
sible to have absent current device.

If MiniM process goes into interactive mode to input next commands to
execute, process makes principal device current automatically using hidden
command use $p. All other opened devices still opened.

MiniM Database Server allow to different processes open and own de-
vices with the same device identification strings, but each of this device is
separate device and are owned by different processes. For example, two or
mode processes can open the same file in file system to append strings or
overwrite different segments and can use file locking. Or two processes can
open interprocess PIPE device with the same operating system command to
execute.

Full device list with device names been opened by process can be obtained
using structured system variable ˆ$D[EVICE]. This variable show only de-
vices been opened by current process only.

Input from device can be made only from current device and there allowed
to input string or one symbol.

Output to device can be made only to current device and there allowed
to output string, one symbol and use special output formatting.

The read and write commands can operate not only strings and symbols,
there allowed to use special formatting output, for example line feed or form
feed or clear screen. This special formatting output dependent of real device
type.

The read command, regardless of name, can output constants and apply
special formatting output to make input much useful, for example:

read !,"Input file name: ",fname

here the read command outputs line feed formatting, from line begin outputs
string ”Input file name: ” and goes into real read mode to accept input as a
string. Read result is placed into a fname local variable.

38 CHAPTER 1. SYNTAX

1.22 Device options

Commands open, use and close can accept additional options with detailed
information what to do with device or change device mode or other function.

Device options are specified after device identification srtring folllowed
by colon. If option is only one, option can be specified without parenthesis,
otherwise parenthesis are mandatory to group several device options. In this
case device options are separated by colon.

Device options can be specified in two manner - by name or by position.
Device option can be with or without value. MiniM distinquish options
specified by position by option position number. If option is specified by
name, this underly of specifying by position. If option is specified by position,
there is placed only value in approptiate position. Examples:

u file:"WT" ; 1

u file:("WT") ; 2

u file:(/MODE="WT") ; 3

u socket:/ACCEPT ; 4

Here listed different ways how to specify device option. Variant 1 - op-
tion specified by position, here option is only one and parenthesis omitted.
Variant 2 - the same as 1 but option in parenthesis. Variant 3 - option is
specified by name (here MODE is an option name). Variant 4 - option is
specified by name and have no value.

Option names and possible values are listed in special chapter for each
supported device type.

Real device option meaning is dependent of device type, and device option
can change device mode as such as make some function with device. For
example, device options /MODE and /TERM changes current device mode
and read terminator, and device options /LOCK and /ACCEPT make file
locking and accept incoming tcp connection.

MiniM Database Server implements many device operations as possible
using device options to save MUMPS syntax without creating many special
$view(”dev”) functions.

1.23 Device mnemonics

Mnemonics are the special language elements, special read and write argu-
ments with possible arguments in parenthesis. Mnemonics starts with special

1.23. DEVICE MNEMONICS 39

symbol ”/” with followed mnemonic name and optional arguments in paren-
thesis and comma delimited. As arguments can be passed any expression
result. Mnemonics seens like a procedures to handle special input-output
actions. For example, to control device with caret position change to special
coordinates with syntax independent of current device type.

For each device can be assigned special routine to handle all this device
mnemonics. And if commands read or write have a mnemonic as an argu-
ment, process automatically transform this mnemonic call to subroutine call
with optional parameters passing. Each device can have separate routine
dependent of device type but call syntax can still identical for several used
devices. For example, the code:

write /CUP(12,20)

read /CUP(12,20)

make caret positioning on the device in interactive mode and specify caret
coordinates to position to. This code seems like device-independent, but
internals of routines to handle this mnemonics can differ from each other for
console and for telnet.

Mnemonic routines can be specified automatically in the server configu-
ration file minim.ini, or can be changed or assigned at any command open or
use. After mnemonic routine assignment this routine still applied to device
until changed.

In the most cases mnemonic routines are organized to make special li-
braries with standard names to make application portability.

Each mnemonic routine must have a label for each mnemonic supported
with optional arguments dependent of mnemonic usage. MiniM process au-
tomatically transform mnemonic call to subroutine call with optional pa-
rameters passing. In mnemonic routine all parameters are accepted by value
only. If subroutine return control by the quit command, the read or write
commands pass control to the next command or handle next command ar-
gument.

40 CHAPTER 1. SYNTAX

Chapter 2

Operators

2.1 Unary Plus (+)

Evaluates argument as a number.

Syntax

+ expr

Definition

Operator Unary Plus (+) evaluates argument as a number and produces
result. Value of argument used as a sequence starts with number and symbols
after number representetion are ignored. Number representation can have
any leading zeroes, plus and minus signs, decimal point and exponent.

Leading signd are used to determine number sign. Absolute value of
number does not changes. Operator Unary Plus may be applied to any
expression.

Operator Unary Plus transform number into internal MiniM representa-
tion and later this value can be transformed to a string, but all automatic
number-to-string conversions are made using canonical number representa-
tion and result may differs from source Unary Plus argument. For example,
number 0 always converted to string without sign.

Examples:

TEMP>w +"123"

123

TEMP>w +"--123"

123

TEMP>w +"-++-+-123"

41

42 CHAPTER 2. OPERATORS

-123

TEMP>w +"-++-+-123.23"

-123.23

TEMP>w +"123.23e12"

123230000000000

TEMP>w +"123.23e1 ff"

1232.3

TEMP>w +" 123.23e1 ff"

0

2.2 Addition (+)

Evaluates an arithmetic sum of two operands evaluated as numbers.

Syntax

expr1 + expr2

Definition

Operator evaluate both operands as numbers and produce an arithmetic
sum. If operator cannot evaluate result using available decimal digits and
get numeric overflow (integer or floating point), operator generate an error
<MAXNUMBER> or <MINNUMBER>.

Examples:

TEMP>w "--123"+"--456"

579

TEMP>w "1a"+"2b"

3

TEMP>w "a"+"b"

0

2.3 Unary Minus (-)

Evaluates argument as a number and reverses the sign.

Syntax

- expr

Definition

2.4. SUBTRACTION (-) 43

Operator Unary Minus (-) evaluates argument as a number, reverses the
sign and produces result. Value of argument used as a sequence starts with
number and symbols after number representetion are ignored. Number rep-
resentation can have any leading zeroes, plus and minus signs, decimal point
and exponent.

Leading signd are used to determine number sign and reverses the sign.
Absolute value of number does not changes. Operator Unary Minus may be
applied to any expression.

Operator Unary Minus transform number into internal MiniM represen-
tation and later this value can be transformed to a string, but all automatic
number-to-string conversions are made using canonical number representa-
tion and result may differs from source Unary Minus argument. For example,
number 0 always converted to string without sign.

Examples:

TEMP>w -"123"

-123

TEMP>w -"--123"

-123

TEMP>w -"-++-+-123"

123

TEMP>w -"123.23e1 ff"

-1232.3

TEMP>w -" 123.23e1 ff"

0

2.4 Subtraction (-)

Operator produces the difference between two operands.

Syntax

expr1 - expr2

Definition

Operator Subtraction evaluates both operands as numbers and produce
arithmetic difference between operand values.

If operator cannot evaluate result using available decimal digits and get
numeric overflow (integer or floating point), operator generate an error <MAXNUMBER>
or <MINNUMBER>.

44 CHAPTER 2. OPERATORS

Examples:

TEMP>w 123-45

78

TEMP>w "12 a"-"8 b"

4

2.5 Multiplication (*)

Operator produces the product of left and right operands as numbers.

Syntax

expr1 * expr2

Definition

Operator evaluates both operands as numbers and produces the product
of operands.

If operator cannot evaluate result using available decimal digits and get
numeric overflow (integer or floating point), operator generate an error <MAXNUMBER>
or <MINNUMBER>.

Examples:

TEMP>w 12*45

540

TEMP>w "12 r"*"45 p"

540

TEMP>w ""*""

0

2.6 Division (/)

Operator produce division result of left operand to right.

Syntax

expr1 / expr2

Definition

Operator evaluates both operands as numbers, divide left to right and
produce result. If right operand evaluates equal 0, operator generate an
error <DIVIDE>.

2.7. INTEGER DIVIDE (BACKSLASH) 45

Division result depending of operands can be integer and floating point
number. If operator cannot evaluate result using available decimal digits and
get numeric overflow (integer or floating point), operator generate an error
<MAXNUMBER> or <MINNUMBER>.

Examples:

TEMP>w 123/45

2.73333333333333

TEMP>w 123/""

<DIVIDE>

TEMP>w 123/"12ff"

10.25

2.7 Integer Divide (backslash)

Operator produces integer result of division two operands.

Syntax

expr1 \ expr2

Definition

Operator evaluates both operands as a numbers and produces the integer
result of division the left operand by the right operand and does not return
a reminder.

Examples:

TEMP>w 12\8

1

TEMP>w 789\123

6

Most widely used case this operator usage is evaluating integer part of a
number:

TEMP>s v=123.456 w v\1

123

46 CHAPTER 2. OPERATORS

2.8 Exponentation (**)

Operator raise left operand to power selected by right operand.

Syntax

expr1 ** expr2

Definition

Operator evaluates both arguments as numbers and reise left operand to
power of right operand.

Operator use available decimal digits and if result cannot be represented,
operator generate errors <MAXNUMBER> or <MINNUMBER> on integer
or floating point overflows.

MiniM can raise to a negative as well as to a positive power.

If value of left operand evaluates as a negative number, operator generate
an error <ILLEGAL VALUE>.

Examples:

TEMP>w 12**-1

.0833333333333333

TEMP>w 12**-3

.000578703703703704

TEMP>w 12**-3.2

.000352062697854864

TEMP>w 4**.5

2

TEMP>w 2**2

4

TEMP>w 2**""

1

2.9 Modulo (#)

Operator produces the value of an arithmetic modulo operation on left and
right operands.

Syntax

expr1 # expr2

2.10. CONCATENATION () 47

Definition

Operator evaluates both operands as numbers, divide left to right and
produce result as arithmetic modulo operation.

If value of right operand evaluates as zero, operator generate an error
<DIVIDE>.

Examples:

TEMP>w 123#8

3

TEMP>w 123\8

15

TEMP>w 123#0

<DIVIDE>

TEMP>w 123#8

3

TEMP>w 123.456#8

3.456

2.10 Concatenation ()

Produce concatenation of operands as strings.

Syntax

expr1 expr2

Definition

Operator evaluates both operands as strings and prodice new string value
with concatenation of operands values. If argument is a number, operator
cast number to a string using standard MiniM casting rules. Length of result
string is a sum of operands lengths after casting to string.

Concatenation operator can be applied to any values but if result over-
flows maximum MiniM string limitation (32K), operator generate an error
<MAXSTRING>.

Examples:

TEMP>w 123e2_"vv"

12300vv

TEMP>s a="b",b="c" w a_b

bc

48 CHAPTER 2. OPERATORS

2.11 Not (’)

Inverts the truth value of the boolean operand or inverts logical operator or
inverts pattern code meaning.

Syntax

’ expr

left ’Operator right

’Patcode

Definition

Unary Not operator evaluates operand expr as number and compares with
zero. If value is zero, operator produces value 1, otherwise produces value 0.

Unary Not operator is mostly wide used to cast expression value to canon-
ical boolean value using two operators: if expression evaluates as 0, result of
two Not operators is 0, otherwise is 1.

Examples:

TEMP>w ’""

1

TEMP>w ’"asd"

1

TEMP>w ’’"asd"

0

TEMP>w ’’123

1

Second form of operator Not is applicable to logical comparision operators
to invert their logic. Table of operators which can be used with Not operator
and result operator:

’= Not equal.
’¿ Not greater (less or equal).
’¡ Not less (greater or equal).
’[Not contains.
’] Not follows.
’& Not AND.
’&& Not AND (used lasy AND).
’ ! Not OR.
’—— Not OR (used lasy OR).
’? Not match pattern code.

2.12. EQUALS (=) 49

Examples:

TEMP>w 123’>12

0

TEMP>w 123’=12

1

TEMP>w 123’<12

1

If Not operator is applied to other operators, compiler generate an error
<SYNTAX>.

The Not operator with logical comparision operator X can be transformed
to unary Not operator by formula:

a ’X b == ’(a X b)

If Not operator used in third form and is applied to pattern code, operator
produce pattern code negating. If pattern code match to ”this symbols”, Not
operator with pattern code produce matching to ”not this symbols”. For
example:

TEMP>w "MiniM"?1"M"1.’N

1

Here pattern matching specify the rule: one symbol ”M” and followed
one or more non-digit symbols.

2.12 Equals (=)

Operator check is operands values are equal.

Syntax

expr1 = expr2

Definition

Operator evaluates both operands as strings anb compares byte-to-byte.
If both strings are equal, operator prodice value 1, otherwise produce value
0. Operator compare strings case sensitive.

If one or both operand values are numeric, MiniM can cast this values to
strings with bytes different from originally wrote by programmer, MiniM use
canonical number-to-string casting rules.

Examples:

50 CHAPTER 2. OPERATORS

TEMP>w 0123=123

1

TEMP>w "0123"="123"

0

TEMP>w +"0123"=+"123"

1

TEMP>w "123.0"=123.0

0

TEMP>w +"123.0"=123.0

1

2.13 Greater (¿)

Operator compares operands as numbers.

Syntax

expr1 ¿ expr2

Definition

Operator evaluates both operands as numbers and compares as numbers.
Result is 1 if left operand is greater than left, otherwise result is 0.

Examples:

TEMP>w "a">"b"

0

TEMP>w "0123">"123"

0

TEMP>w "01230">"123"

1

TEMP>w "2 apples">"1 apple"

1

2.14 Greater or Equal (¿=)

Operator compares operands as numbers.

Syntax

expr1 ¿= expr2

Definition

2.15. LESS (¡) 51

Operator evaluates both operands as numbers and compares as numbers.
Result is 1 if left operand is greater than left or equal left, otherwise result
is 0.

Operator greater or equal is not part of MUMPS standard and intended
to simplify code writing and meaning. It is equal to operator not less.

Examples:

TEMP>w "a">="b"

1

TEMP>w "0123">="123"

1

TEMP>w "01230">="123"

1

2.15 Less (¡)

Operator compares operands as numbers.

Syntax

expr1 < expr2

Definition

Operator evaluates both operands as numbers and compares as numbers.
Result is 1 if left operand is less than left, otherwise result is 0.

Examples:

TEMP>w "a"<"b"

0

TEMP>w "0123"<"123"

0

TEMP>w "01230">"123"

0

TEMP>w "01230"<"12300"

1

2.16 Less or Equal (¡=)

Operator compares operands as numbers.

52 CHAPTER 2. OPERATORS

Syntax

expr1 <= expr2

Definition

Operator evaluates both operands as numbers and compares as numbers.
Result is 1 if left operand is less than left or equal left, otherwise result is 0.

Operator less or equal is not part of MUMPS standard and intended to
simplify code writing and meaning. It is equal to operator not greater.

Examples:

TEMP>w "a"<="b"

1

TEMP>w "012"<="013"

1

TEMP>w 123<=45

0

2.17 Contains ([)

Operator produce truth value if left operand contains right operand as strings.

Syntax

expr1 [expr2

Definition

Operator evaluates both operands as strings and search right operand in
left operand case sensitive. If it is found, operator produce 1 otherwise 0.

Special case of the Contains operator is right operand equals an empty
string. In this case operator always produce 1, it is a part of MUMPS
standard.

Examples:

TEMP>w 123[12

1

TEMP>w "MiniM"["N"

0

TEMP>w 123456[""

1

2.18. FOLLOWS (]) 53

2.18 Follows (])

Operator tests operands follows in ASCII collating sequence.

Syntax

expr1] expr2

Definition

Operator evaluates both operands as strings and tests value of left operand
follows after right operand in ASCII collating sequence. To compare symbols
operator compare ASCII codes of symbols.

Examples:

TEMP>w 123]""

1

TEMP>w 123]123

0

TEMP>w ""]123

0

TEMP>w "minim"]"mini"

1

TEMP>w 1]0

1

2.19 Follows or Equal (]=)

Operator tests operands follows in ASCII collating sequence or are equals in
literal form.

Syntax

expr1]= expr2

Definition

Operator evaluates both operands as strings and tests value of left operand
follows after right operand in ASCII collating sequence or both operands are
equals. To compare symbols operator compare ASCII codes of symbols.

54 CHAPTER 2. OPERATORS

2.20 Sorts After (]])

Compares two operand using subscript sorting.

Syntax

expr1]] expr2

Definition

Operator Sorts After tests whether left operand sorts after right using
current subscript collation sorting. Operand evaluates both operands and
check is it numbers or strings and use subscript collation and rules to produce
result. Result is 1 if left operand sorts after right operand.

Subscript collation rules are: first of all sorts empty strings. After empty
strings sorts numbers as numbers in arithmetic order. After numbers sorts
other strings using current server collation defined in minim.ini file, section
Server, key Locale.

The same rule is used to sort variable’s subscripts for global, local and
structured system variables.

2.21 Sorts After or Equal (]]=)

Compares two operand using subscript sorting.

Syntax

expr1]]= expr2

Definition

Operator Sorts After or Equals tests whether left operand sorts after right
using current subscript collation sorting or are equals in subscript collation.
Operand evaluates both operands and check is it numbers or strings and use
subscript collation and rules to produce result. Result is 1 if left operand
sorts after right operand or both operands are equals.

Subscript collation rules are: first of all sorts empty strings. After empty
strings sorts numbers as numbers in arithmetic order. After numbers sorts
other strings using current server collation defined in minim.ini file, section
Server, key Locale.

The same rule is used to sort variable’s subscripts for global, local and
structured system variables.

2.23. LAZY AND (&&) 55

2.22 AND (&)

Evaluates a logical AND operation of operands.

Syntax

expr1 & expr2

Definition

Operator evaluates both operands as truth-values (zero or not) and pro-
duce binary AND operation using the following table:

expr1 expr2 AND
0 0 0
0 1 0
1 0 0
1 1 1

Examples:

TEMP>w 123&456

1

TEMP>w "a"&"b"

0

2.23 Lazy AND (&&)

Evaluates a logical AND operation of operands.

Syntax

expr1 && expr2

Definition

Operator Lazy AND evaluates left expression as truth value. If result is
0, operand does not evaluate right operand and produces result 0. Otherwise
operator evaluates right operand as truth value and if it is 0, produce result
0, otherwise produce result 1.

Operator Lazy AND is not a part of MUMPS standard and if goal is write
portable programs it is not recommended to use. Operator have side effect
dependent of left operand evaluation result.

Examples:

56 CHAPTER 2. OPERATORS

TEMP>k

TEMP>w 0&&$i(a),! w

0

TEMP>w 1&&$i(a),! w

1

a=1

Here in first case operator have no side effect of a variable incrementing,
and in second case have.

If operator Not is applied to operator Lazy AND, it saves lazy behavior.

2.24 OR (!)

Evaluates a logical OR operation of operands.

Syntax

expr1 ! expr2

Definition

Operator evaluates both operands as truth-values (zero or not) and pro-
duce binary OR operation using the following table:

expr1 expr2 OR
0 0 0
0 1 1
1 0 1
1 1 1

Examples:

TEMP>w 1!"a"

1

TEMP>w " "!"a"

0

2.26. XOR (!!) 57

2.25 Lazy OR (||)

Evaluates a logical OR operation of operands.

Syntax

expr1 || expr2

Definition

Operator Lazy OR evaluates first left operand as truth value and if it is
1, does not evaluate right operand and produce result 1. Otherwise oper-
ator evaluates right operand as truth value and if it is 1, produce result 1,
otherwise result is 0.

Operator Lazy OR is not a part of MUMPS standard and if goal is write
portable programs it is not recommended to use. Operator have side effect
dependent of left operand evaluation result.

Examples:

TEMP>w 1||$i(a),! w

1

TEMP>w 0||$i(a),! w

1

a=1

If operator Not is applied to operator Lazy OR, it saves lazy behavior.

2.26 XOR (!!)

Evaluates a logical XOR operation of operands.

Syntax

expr1 !! expr2

Definition

Operator evaluates both operands as truth-values (zero or not) and pro-
duce XOR operation using the following table:

expr1 expr2 XOR
0 0 0
0 1 1
1 0 1
1 1 0

58 CHAPTER 2. OPERATORS

Examples:

TEMP>w 123!!456

0

TEMP>w "a"!!"b"

0

TEMP>w 0!!6

1

2.27 Pattern Matching (?)

Operator produces result is string matched to pattern or not.

Syntax

expr1 ? expr2

Definition

expr1 Expression evaluates as string to match
pattern.

expr2 Pattern.

Right part expr2 can be evaluated on execution if it is used pattern indi-
rection:

expr1 ? @expr2

In this case MiniM use expr2 evaluated as string as pattern.

MUMPS pattern consists of sequence of atomic patterns followed by each
other. One atomic pattern consists of repeat counter with following pattern
code or symbol sequence or alternation:

pattern = repcount patcode

pattern = repcount string

pattern = repcount alternation

Repeat counter consists of digits with or without dot. Repeat count is
applied once to the following pattern code and mean matched string contains
this specified symbols with this repeat count. Repeat counter can be specified
using the following syntax or repeatition:

2.27. PATTERN MATCHING (?) 59

count Only this repeat count.
. Any count including 0.
min . At least min times, maximum is not

limited.
. max Maximum max times, minimum can be

0.
min . max From min to max times inclusively.

Pattern code is a special symbol to specify symbols class:

A Letter.
C Nonprintable symbols. Symbols with

ASCII code from 0 to 31 and 127.
E Any symbol.
L Letter in lower case.
N Digit.
P Punctuation symbols and space.
U Letter in upper case.

Pattern codes can be use case insensitive.

To determine symbol class as letter MiniM process use server current
national collation table specified in minim.ini file, section Server, key Locale.
This file is a special symbols tables edited by MiniM Collation Editor. File
store information how to collate symbols and how to make upper and lower
case. MiniM consider that symbol is a letter if conversion to upper and lower
case have different results.

Pattern code can follow one by one, and this group specify united symbols
class. For example, pattern code UN is ”symbol in upper case or digit”. For
example:

TEMP>w "MiniM"?1UN.E

1

MiniM can apply the Not operator to pattern code to invert symbols
class, result of class inverting is a new class ”not in this class”. For example:

TEMP>w "MiniM"?1’N.E

1

TEMP>w "MiniM"?1’NP.E

1

60 CHAPTER 2. OPERATORS

Here first pattern specify matching rule: first symbol is not a digit, with
eny following and second rule: first symbol is not a digit and not punctuation
with any following.

Symbol sequence is pecified by ordinal MUMPS string following by pat-
count without spaces and ebreced to double quotes, for example:

TEMP>w "MiniM"?1"M".E

1

Here specified matching rule: first one string ”M” with any following
symbols.

Other samples:

TEMP>w "MiniM"?1"Mini".E

1

TEMP>w "MiniM"?1"Minim".E

0

This patterns specify matching rules for strings starts with ”Mini” and
with ”Minim”.

Pattern alternation is specified by parenthesis with alternative patterns
delimited by comma:

alternation = (pattern [, pattern ...])

Alternation pattern specify matching to one of alternative.

Examples:

TEMP>w "MiniM"?1(1"Min",1"Max").E

1

TEMP>w "MiniM"?1(1"mos",1"ber").E

0

Alternation pattern can be specified within other alternation.

With pattern alternation can be specified special symbol pseudo classes,
for example matching to octal digits:

2.28. HEXADECIMAL (#) 61

TEMP>w "MiniM"?.(1"0",1"1",1"2",1"3",1"4",1"5",1"6",1"7")

0

TEMP>w "0177"?.(1"0",1"1",1"2",1"3",1"4",1"5",1"6",1"7")

1

And, using pattern indirection this new symbol class can be used shortly:

TEMP>s patoct=".(1""0"",1""1"",1""2"",1""3"",

1""4"",1""5"",1""6"",1""7"")"

TEMP>w "MiniM"?@patoct

0

TEMP>w "0177"?@patoct

1

2.28 Hexadecimal (#)

Operator return integer from his hexadecimal representation.

Syntax

symbols

Definition

Operator Hexadecimal is a part of MiniM numbers syntax, is used on
compilation stage and cannot be applied to evaluated expression. After sym-
bol # must follows hexadecimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, A, b, B,
c, C, d, D, e, E, f, F). Result of interpreting this hexadecimal digits sequence
is a operator result.

Less significant digit is specified by rightmost hexadecimal symbol, and
leftmost symbol specify more significant digit. If count of hexadecimal sym-
bols is odd, MiniM left pad symbols with leading zero.

When you use the hexadecimal representation must take into account
special symbol # is also write command special format. To use hexadecimal
numbers in write argument it is need to place hexadecimal notation into
parenthesis.

Examples:

TEMP>s a=#41

TEMP>w

62 CHAPTER 2. OPERATORS

a=65

TEMP>w $a(#41)

54

TEMP>w $c(#41)

A

TEMP>w $c(#41,#42,#43)

ABC

TEMP>s a=#123,b=#ff

TEMP>w

a=291

b=255

TEMP>w (#cafe)

51966

TEMP>w (#CAFE)

51966

TEMP>w (#AAA)

2730

TEMP>w (#0AAA)

2730

TEMP>w *#41

A

Chapter 3

Commands

3.1 CLOSE

Command close specified device or all devices.

Syntax

C[LOSE][:pc]

C[LOSE][:pc] closearg[,closearg2,...]

C[LOSE][:pc] dev[:param]

C[LOSE][:pc] dev[:(param,...)]

C[LOSE][:pc] @indclosearg

Description

pc Postconditional expression.
dev Device identification name.
params Command parameters.
closearg Command arguments as dev[:params].
indclosearg Argument indirection.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

If close command applies to principal device, it does nothing and no errors

63

64 CHAPTER 3. COMMANDS

are generated. The close command can close only devices which have been
opened only by current process and cannot close devices opened by other
processes.

While executes, the close command closes devices, free used by this device
resources and remove device from current device list. If this device has been
current, command make current device the principal device.

The close command without arguments closes all opened devices and
make current device the proncipal device.

If specified in argument device has not been opened, command does noth-
ing.

The close command arguments are specified by name or by position.
If command’s parameter is only once, it can be used without parentheses,
otherwise parentheses are mandatory. For example:

s dev="|FILE|c:\temp\1234.tmp"

close dev:/DELETE ; 1

close dev:(/DELETE) ; 2

close dev:(/TRUNCATE:/RENAME="L:\1234.log") ; 3

In this first case used only one parameter, it may be specified without
parentheses. In the second case one parameter specified in parentheses, in
last case used two parameters, and here parentheses are mandatory.

The command’s parameters names are case-insensitive. For example::

close "|FILE|c:\temp\1234.tmp":(/DELETE)

close "|FILE|c:\temp\1234.tmp":(/Delete)

close "|FILE|c:\temp\1234.tmp":(/delete)

Here the /DELETE parameter is specified in different cases, but logically
all cases are identical

If was specified command argument indirection, the indclosearg evaluates
as string and the close command applies to the result. For example:

s fname="c:\tmp\123.tmp"

s opt="(/DELETE)"

...

s indclosearg="""|FILE|"_fname_""":"_opt

close @indclosearg

In the command indirection case the value of the indclosearg cannot be
an empty string, in this case is generated the error <SYNTAX>.

3.2. DO 65

3.2 DO

Command call the subroutine.

Syntax

D[O][:pc] entryref[:pc1][,entryref[:pc2]]

D[O][:pc] entryref([param[,param2...]])[:pc1][,entryref([param[,param2...]])[:pc2]]

D[O][:pc] @doarg

D[O][:pc]

Description

pc Postconditional expression.
entryref Reference to call subroutine.
doarg Argument indirection, expression with command argu-

ments.
param Actual parameter (skipped, call by value or call local

name by reference).

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

The entryref points can be in the forms::

LabelName[+Offset][^RoutineName]

^RoutineName

Here are

LabelName Label name in the routine.
Offset Line offset.
RoutineName The routine name.

The routine name can be used with or without database specification. If
the database name not specified, here used routinein the current database.
The database specification need to be before the routine name, for example:

66 CHAPTER 3. COMMANDS

LabelName^|dbname|RoutineName

The offset evaluates as an expression, casts to the integer and need to be
positive value. Here the plus symbol is part of the entryref syntax.

All parts of the entryref can be specified indirectly:

@LabelNameExpr[+Offset][^@RoutineNameExpr]

^@RoutineNameExpr

The postconditional expressions with entryref evaluates, if specified, as
integers. If postconditional expression with entryref does not specified, the
do command call subroutine, If postconditional expression is specified, it
evaluates and compare with 0. If expression is 0, the do command does not
call the subroutine, and if non zero, do.

The command argumens calls in left-to-right order.

In the subroutine context execution command do creates new stack level
and sustem variable $quit has value 0.

The number of parameters passed can be other than subroutine accepts.
Here applies common parameter passing rule, see this documentation topic
about parameter passing.

If used command indirection then doarg evaluates as string and value used
as entryref. The doarg value must be syntax-correct, it can be one or more
entryref, delimited by comma.

Argumentless do command executes, if postconditional expression eval-
uates as non-zero, executes the block of code that immediately follows by
current line. The block of code is command line’s sequence with dots in first.
The nested block of code need to have one more dots. The dots count is a
block of code nesting level. The argumentless do command executes nested
block of code if lines have one more dots than in the current line..

If lines of nested block of code ends, there exicutes implicit quit command,
and nested block execution terminates. After execution argumentless do
command the control continues with next command. For example:

label(param)

new i

for i=1:1:param do

. write "i = ",i,!

. f j=1:1:3 d

. . w "j = ",j,!

quit

3.3. ELSE 67

If inside nested block of code present and executes argumentless quit
command, it terminates block execution and control continues after the ar-
gumentless do command.

If inside nested block of code present and executes the quit command
with argument, it generates the <COMMAND> error because the do context
execution does not allow value return.

If the argumentless do command executes without current routine context
it generates the <SYNTAX> error.

If executes argumentless do command there value of system variable $test
is stacked, but for argumented form do command not. See comments for
system variable $test. It is provided for comatibility with MUMPS program
written prior the MUMPS have block of code.

Indirection of the DO command allows soft label recognition, and are
used only first labels. All other symbols after labels are ignored.

3.3 ELSE

Executes follows commands if system variable $test is 0.

Syntax

E[LSE]

Description

The else command have not postconditional expression.

The else command compares system variable $test with 0. If value is 0,
control continue execution follows commands.

The else command does not change value of system variable $test.

The value of $test changes on execution of if command, lock, read, open
and job commands if timeout is specified.

3.4 FOR

Executes next followed commands as many times as specified in for argu-
ments.

Syntax

F[OR]

68 CHAPTER 3. COMMANDS

F[OR] lvn=forparams[,lvn2=forparams2,...]

Description

lvn Local variable name, the cycle variable.
forparams For arguments, conditions to execute cycle.

The for command does not have postconditional expression and indirec-
tion form.

Argumentless for command continue execution following in line command
until argumentless quit command, goto command is reached, or if the process
is interrupted. If reached quit command with arguments, it is generates
<COMMAND> error. The quit and goto commands interrupts execution of
last executed for command if in line present several for commands.

The forparam parameters need to be specified with comma delimiting:

forparams = forparam[,forparam...],

where each of the forparam can have one of the following form:

expr One value.
start:step Cycle start and cycle step.
start:step:end Cycle start, cycle step and cycle end.

Each of the expr, start, step and end expressions evaluates only onve
before following commands executes and next variable’s changes does not
affect to the for conditions.

While executes, the for command determines current cycle form and com-
pares the cycle variable with specified conditions. The cycle executes with
current value of cycle variable.

If it is specified several forparam delimited by comma, ones applies in
left-to-right order and can be specified different forparam forms.

One Value

If specified one value for cycle variable, the for command assign cycle
variable to specified expression value and executes cycle once. For example:

TEMP>f i=1 w

i=1

3.4. FOR 69

With specifying several expressions there is possible to make cycle with
special values, for example:

TEMP>f i="red","green","blue" w i,!

red

green

blue

Cycle start and cycle step

If specified cycle start and step form for for command, the command
evaluates start and step values and use it within cycle iteration. The values
of start and step does not evaluates later.

First cycle iteration executes with cycle variable assigned to the start
value. Next iteration the for command increment cycle variable as number
to value of step. Cycle execution continues until quit or goto commands
reached. For example:

TEMP>f i=1:1 w i,! q:i>=12

1

2

3

4

5

6

7

8

9

10

11

12

TEMP>

The cycle variable value as such as other local variable can be changed
inside cycle. If after next iteration the cycle variable have undefined value,
the for command generates the <UNDEFINED> error. For example:

TEMP>f i=1:1 w i,! k:i=5 i q:i>=12

1

2

70 CHAPTER 3. COMMANDS

3

4

5

<UNDEFINED>

TEMP>

TEMP>f i=1:1 w i,! s i=i+$random(5) q:i>=12

1

2

5

6

8

11

12

The cycle direction, incrementing or decrementing the cycle variable, de-
termined by the step variable.

Cycle start, step and end

The for command behavior in this form depends of the step value sign, is
it negative or non-negative.

If the step is non-negative, the start, step and end values evaluates as
numbers, and next this does not change and used as it evaluates. The cycle
variable assigned to the start value. If the variable value is greater than
end value (compared as numbers), the cycle is done. Otherwise executes
commands followed by the for command.

After next cycle iteration the for command compare the cycle variable
with the end value. If it is greater than end, cycle terminates. Otherwise the
for command increment cycle variable by the step value. Result compares
with the end again and if it is greater, cycle terminates. Otherwise following
commands executes. And this iterations repeates again. For example:

TEMP>f i=1:2:8 w i,!

1

3

5

7

TEMP>

3.5. GOTO 71

If the step is negative, the start, step and end values evaluates as numbers,
and next this does not change and used as it evaluates. The cycle variable
assigned to the start value. If the variable value is less than end value (com-
pared as numbers), the cycle is done. Otherwise executes commands followed
by the for command.

After next cycle iteration the for command compare the cycle variable
with the end value. If it is less than end, cycle terminates. Otherwise the
for command increment cycle variable by the step value (negative). Result
compares with the end again and if it is less, cycle terminates. Otherwise
following commands executes. And this iterations repeates again. For exam-
ple:

TEMP>f i=3:-2:-6 w i,!

3

1

-1

-3

-5

TEMP>

So, the greater - less comparisions with the end value depends of the step
sign and programmer can change the cycle variable to change cycle execution.
For example:

TEMP>f i=1:1:5 w i,! i i=3 s i=10

1

2

3

TEMP>

3.5 GOTO

The goto command continue execution from the specified line.

Syntax

G[OTO][:pc] labelref1[:pc1][,labelref2[:pc2],...]

G[OTO][:pc] @gotoarg

Description

72 CHAPTER 3. COMMANDS

pc Postconditional expression.
labelref The label name, offset, routine name.
@gotoarg Argument indirection with label(s).

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applued to all arguments. Command applies to argument in left-
to-right sequence as specified.

Postconditional expressions with labels evaluates to check need to go this
label, If postconditional expression is absent, goto command go to specified
label. Otherwise postconditional expression evaluates and compares with 0,
if it is zero, goto command ignores label and continues execution or check
next specified labelref delimited by comma.

The goto command go to label only once, and check in left-to-right order.

The full labelref can contain label name, offset and routine with database
specification. If routine name is absent, used label in the current routine. If
label name is absent, line counts from first line of routine. If offset is absent,
execution continues from the line with label. If label name and offset does
not specified, execution continues from first line of routine.

Offset need to be (if present) as expression and cannot have negative
values.

The goto command does not pass any parameters to labelref.

To execute goto from the block of code command skip lines until reached
line with the same (or less) dots count as the line at which goto is.

If specified non existing labelref, the goto generate error about label does
not exist.

If specified indirection command form the gotoarg need to be syntax-
correct labelref list. If indirection is specified, the value of doarg is evaliated
first and then goto command use this string.

Indirection of the GOTO command allows soft label recognition, and are
used only first labels. All other symbols after labels are ignored.

3.6 HALT

The halt command terminates process execution.

3.7. HANG 73

Syntax

H[ALT][:pc]

Description

pc Postconditional expression.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

The halt command, depending of server settings, executes transaction
rollback or commit, or nothing, closes all opened by process devices, unlock
all locked local and global variables, frees all resources and loaded dynamic
libraries. For example:

h ; 1

h:a=1 ; 2

h:a ; 3

Here in 1 case executes unconditional process exit, in 2 case exit executes
in depending variable a is equal 1 and in 3 case executes exit if variable a is
defined and is nonzero.

MiniMono difference

In the MiniM Embedded Edition the halt command terminates current
host process call but does not terminates the entire process. After MiniMono
call was terminated by the halt command, host process can call MiniMono
again. Host process must terminate semself.

3.7 HANG

The hang command suspend process execution to specified number of sec-
onds.

Syntax

H[ANG][:pc] time[,time2,...]

H[ANG][:pc] @hangarg

74 CHAPTER 3. COMMANDS

Description

3.8. IF 75

pc Postconditional expression.
time Expression to specify timeout to suspend.
hangarg Argument indirection.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

The hang command evaluates the time expression as number. The result
is used as seconds number, and command suspend process execution. The
time is used as number with fractional part and precision up to milliseconds.
For example:

hang 2 ; 1

set t=2 ; 2

hang t

Here in first case process hangs to 2 seconds and timeout is specified by
constant and in second case timeput is specified by expression.

In command argument indirection case the value of hangarg evaluates as
string and used as hang arguments. For example:

h @("3,3")

Here one-by-one executes two hang commands by 3 seconds.

3.8 IF

The if command continue execution of the followed commands if command’s
condition is non-zero.

Syntax

I[F]

I[F] expr[,expr2,...]

I[F] @ifarg

Description

76 CHAPTER 3. COMMANDS

expr Truth value expression.
ifarg Argument indirection.

The if command have not postcondition expressions.

The if command in argumentless form tests the $test value. The $test
value compares with 0 and if $test value is not 0, if command continue
execution of the followed commands in current line. Otherwise command
execution at this line terminates, and acts as line end.

The if command with argument evaluates argument and compares with
0. If it is nonzero, if command continue execution of the followed commands
in current line. Otherwise command execution at this line terminates, and
acts as line end.

The if command with indirection evaluates argument as string and it used
as command argument.

If the if command have several arguments delimited with comma, the if
command evaluates argument sequientially in left-to-right order and compare
each argument with 0.

Examples:

Check the value of $test variable and make action dependent of value:

TEMP>w $t

0

TEMP>i w 1

TEMP>

Evaluate expression and make action dependent of value:

TEMP>i 1,2 w 123

123

TEMP>s a=0

TEMP>i a w 456

TEMP>

Evaluate arument indirection form and apply command to result:

3.9. JOB 77

TEMP>s ifexpr="1,2"

TEMP>i @ifexpr w 123

123

TEMP>s ifexpr="1,0"

TEMP>i @ifexpr w 123

TEMP>

As ifexpr expression can be used any MUMPS variables, functiona and
operators.

If the if command continue execution, the $test variable sets to 1 value,
otherwise sets to 0. Later the $test value can be used with argumentless if
command and with else command.

3.9 JOB

The job command run new MUMPS process.

Syntax

J[OB][:pc] jobargument,...

jobargument =

label^|database|routine(params):(process-params):timeout

process-params =

process-param[:process-params...]

J[OB][:pc] @jobarg

Description

pc Postconditional expression.
jobargument New job label start specification.
label Label in routine to start new job from.
database Database of routine to start new job from.
routine Routine name to start job from.
params Actual passed parameters.
process-params New job parameters, environment.
timeout Timeout to wait new job starts, seconds.

78 CHAPTER 3. COMMANDS

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

In the job parameters passing here does not allowed passing parameter by
reference to local variable. Other passing methods are allowed like as ordinal
subroutine call. If job command reached passing local variables by reference
it generates <JOB> error.

There is not allowed to specify label offset and parameters simultaneously.

The job command runs new MiniM process, which starts execution from
the specified label in specified routine. Process get the passed parameters
param. New process have the value of $zparent system variable with job
number of parent process. After execution the parent process have in $zchild
system variable number of child process. This value is available until the
next job command executes and does not expired if child process terminates.

New child process is running in separate Windows address space, have
own local variables, devices and locks. All MiniM processes executes con-
currently. If the computer have several CPU, processes can executes concur-
rently in the same time.

New child process have principal device |NULL| by default.

If timeout is specified, the job command sets the system variable $test to
1 if child process runs successfully and otherwise to 0. If timeout does not
specified, the value of $test dows not affected.

New child process can get additional variables as process parameters (en-
vironment). The process parameters need to separated by comma.

First process parameter (if present) show the database name to run child
process. Child process switches to specified database on start. If process
parameter is only once, the parentheses are not mandatory.

The second process parameter is the device name with type |TCP| to
pass to child process. For this device need to be executed the /ACCEPT
operation. Child process gets the tcp/ip socket to use concurrently and child
process have principal device |TCP| by default. Device has options to read
and write and work in bynary mode. Child process can change device options
using the use command with principal device.

3.10. KILL 79

The third process parameter need to be (if present) the string with local
variables names delimited by comma. This variables with values as is are
created inside child process on start. It is full copy including indexed values
with the same names.

Any of process parameters can be omitted, but parameter position need
to be specified by colons. Before last omitted process parameters colons are
not mandatory. All process parameters can be passed as constants as cuch
as expression. All expression are evaluated in left-to-right order.

New child process start execution with ”DO” context and after quit from
subroutine child process terminates.

One job command can have several arguments, for each of one command
runs new child process as specified in left-to-right order.

The jobarg value evaluates as a string and used as job arguments, and
can contain one label to run one child process or several to run several child
processes.

MiniMono difference

MiniM Embedded Edition does not implement the JOB command.

3.10 KILL

The kill command removes local or global variables including subscripts (if
exists).

Syntax

K[ILL][:pc]

K[ILL][:pc] varname

K[ILL][:pc] ssvn

K[ILL][:pc] killname[,killname2,...]

K[ILL][:pc] (lockvarname1[,lockvarname2,...])

K[ILL][:pc] @killarg

Description

pc Postconditional expression.
varname Local or global variable name.
ssvn Structured system variable if one allow kill command.

80 CHAPTER 3. COMMANDS

killname Local or global or structured system variable if one allow
kill command.

lockvarname Local variable name.
killarg Argument indirection.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

Argumentless kill command removes all local variable which are visible at
the current stack level. It does not mean removing all other variables with
the same name on other stack level. If variable has been created at level 1
and newed on the level 2, the kill command removes only variable at the 2
level and does not affect to level 1.

Removing local or global variable

If specified local or global variable name, this variable removes including
all available subscriupts. If variable is a global variable, it makes an appro-
priate journal records, and trollback command can rollback removing later.
If removes local variables, it does not journaled. For example:

kill ^abc

kill a,b,c

If specified variable has been locked bu the lock command, the kill com-
mand ignores lock. This relate to local and global variables.

Removing structured system variable allowed only in special cases of this
variables. Each structured system variable has own special meaning what
does the kill command. For example, kill from ˆ$LOCK affect removing
lock, and kill from ˆ$JOB affect killing MiniM process. For details what
allowed with kill command and structured system variables see reference to
selected structured system variable.

Exclusive kill command removes all local variables except specified and
listed in parentheses delimited by comma. In list allowed only unsubscripted
local variable names. Global and structured system variables does not al-
lowed in exclusive kill command. For example:

3.11. KSUBSCRIPTS 81

TEMP>s a=1,b=2,c=3,d=4

TEMP>w

a=1

b=2

c=3

d=4

TEMP>k (b,d)

TEMP>w

b=2

d=4

TEMP>

Argument indirection for kill command evaluates expression killarg as a
string and kill command applied to result. The killarg content need to be a
valid kill arguments. For example:

TEMP>s a=1,b=2,c=3,d=4

TEMP>s killarg="b,d"

TEMP>k @killarg

TEMP>w

a=1

c=3

killarg="b,d"

TEMP>

If variable does not exist, the kill command does nothing.

3.11 KSUBSCRIPTS

The ksubscripts command removes local or global variable subscripts if ones
exists.

Syntax

82 CHAPTER 3. COMMANDS

KS[UBSCRIPTS][:pc]

KS[UBSCRIPTS][:pc] varname

KS[UBSCRIPTS][:pc] killname[,killname2,...]

KS[UBSCRIPTS][:pc] (lockvarname1[,lockvarname2,...])

KS[UBSCRIPTS][:pc] @killarg

Description

pc Postconditional expression.
varname Local or global variable name.
killname Local or global variable name.
lockvarname Local variable name.
killarg Argument indirection.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

Argumentless ksubscripts removes subscripts in all available on the current
stack level local variables. It does not mean removing all other variables with
the same name on other stack level. If variable has been created at level 1
and newed on the level 2, the ksubscripts command removes only variable at
the 2 level and does not affect to level 1.

The ksubscripts command removes only subscripts, it not affected to the
specified name. For global variable the ksubscripts command make journal
records and trollback command can rollback removing later. If removes local
variables, it does not journaled. For example:

ksubscripts ^abc

ksubscripts a,b,c

If specified variable has been locked bu the lock command, the ksubscripts
command ignores lock. This relate to local and global variables.

The ksubscripts command cannot be allplied to structured system vari-
ables, this case generate the <COMMAND> error. it does not relate to
structured system variables, it is specific of MiniM implementation.

3.12. KVALUE 83

Exclusive ksubscripts command removes all local variables except spec-
ified and listed in parentheses delimited by comma. In list allowed only
unsubscripted local variable names. Global and structured system variables
does not allowed in exclusive ksubscripts command. For example:

Argument indirection for ksubscripts command evaluates expression kil-
larg as a string and ksubscripts command applied to result. The killarg con-
tent need to be a valid ksubscripts arguments.

If variable or subscripts does not exist, the ksubscripts command does
nothing.

3.12 KVALUE

Removes the specified variable without removing subscripts.

Syntax

KV[ALUE][:pc]

KV[ALUE][:pc] varname

KV[ALUE][:pc] killname[,killname2,...]

KV[ALUE][:pc] (lockvarname1[,lockvarname2,...])

KV[ALUE][:pc] @killarg

Description

pc Postconditional expression.
varname Local or global variable name.
killname Local or global variable name.
lockvarname Local variable name.
killarg Argument indirection.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

Argimentless form of the kvalue command removes all local variables,
visible at the current stack level without removing subscripts. Argumentless
kvalue command does not remove variables with the same name at another

84 CHAPTER 3. COMMANDS

stack level. If variable has been created at level 1 and newed on the level 2,
the kvalue command removes only variable at the 2 level and does not affect
to level 1.

Removing local or global variable

If specified local or global variable, it removes except subscripts. If
database is joutnaled, removing values make a journal records about each
removed variable. After this the trollback command can roll back variable’s
values. Local variables are not journaled. For example:

kvalue ^abc

kvalue a,b,c

If specified variable has been locked bu the lock command, the kvalue
command ignores lock. This relate to local and global variables.

The kvalue command cannot be allplied to structured system variables,
this case generate the <COMMAND> error. it does not relate to structured
system variables, it is specific of MiniM implementation.

Exclusive kvalue command removes all variables except specified in the
list and except subscripts. In the list can be specified only local variable
names.

Argument indirection for kvalue command evaluates expression killarg as
a string and kvalue command applied to result. The killarg content need to
be a valid kvalue arguments.

If variable does not exist, the kvalue command does nothing.

3.13 LOCK

Create or remove lock of local or global variable.

Syntax

L[OCK][:pc]

L[OCK][:pc] glvn[:to]

L[OCK][:pc] glvn[:to][,glvn2[:to2],...]

L[OCK][:pc] (glvn1[,glvn2...])[:to]

L[OCK][:pc] +glvn[:to]

L[OCK][:pc] +(glvn1[,glvn2...])[:to]

3.13. LOCK 85

L[OCK][:pc] -glvn

L[OCK][:pc] @lockarg

Description

pc Postconditional expression.
glvn Local or global variable name.
lockarg Argument indirection.
to Timeout to wait lock.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

The lock command create or remove lock of local or global variable. Lock
is an internal MiniM Database Server object, it is visible by all existing
MiniM process of one instance. Lock have name of the local or global variable.

The local or global variable does not need to exist. The database of lock
does not exist. Database name does not checked on existence and can be used
database names with any names including impossible. If database name for
global variable does not specified, lock mean the current database name of
current process.

All existing lock objects are available in the structured system variable
ˆ$LOCK. Each lock can be removed not only by lock command, can be used
the kill command with ˆ$LOCK variable and lock name as first subscript.
The lock command can unlock only owned locked variables, and kill command
with ˆ$LOCK variable can remove lock independently of the lock owning.

All locks created by process autonatically are removed if process halts. If
process is killed not the regular stuff, MiniM Database Server automatically
run the guardian process to remove all lock objects made by this process. In
this case all locks are removed only after transaction rollback to allow make
correct concurrent data access.

Locking rule is to not allow two or more process lock the same name, lock
the name with more subscripts or with less subscripts together. The name
resolving id made for fully specified names after substituting database name
(for globals) and all subscripts. Two or more MiniM processes can lock the
same names which differs only by last subscripts.

86 CHAPTER 3. COMMANDS

If locking cannot be created, the lock command goes MiniM process to
waiting lock until locking rule not reached ot locking timeout does not ex-
pired. The lock timeout evaluates as a number of seconds with milliseconds
presicion. The end of locking counts from begin lock command. If timeout
does not specified, it mean indefinite timeout to wait lock collision. Here
programmers should make decision what to do to barring deadlocks.

If the lock timeout is specified, MiniM process sets the system variable
$test, otherwise the $test does not changed. If timeout is specified and lock
is successed before timeout expired, the $test variable sets to 1, if lock does
not created before timeout expired, the $test variables sets to 0.

After unlocking independenly of the way to ublock, the locked name (and
name with or without subscripts) as available to lock by other process within
the same MiniM instance.

All MiniM instances have independent locking area and does not affect
to each other.

If lock is created inside a transaction context ($tlevel’=0), lock object
stiil active until the end of transaction even if process make unlock. On
the transaction end process check lock objects made within transaction and
unlocked and really remove lock objects. If lock object is removed by kill
ˆ$LOCK variable, it remove lock object immediately and independently of
transaction contest of the owner.

Argumentless form of lock command

lock

Argumentless form of the lock command removes locking of all owned lock
objects, independently of count and presence of owned locks.

Name locking

lock glvn

As the lock name can be specified local or global variable names, and with
subscripts. Global names can be specified with or without database name.
If database name does not specified, it is used name of current database.
Here MiniM applies mapping rules - if global variable name starts from the
percent symbol (%), used the ”%sys” database, if name starts with mtemp,
used the ”temp” database.

Before execution the lock command removes all owned locks, even if lock-
ing name already is locked. After this make lock for specified name. For
example, while executes the code

3.13. LOCK 87

lock a,b,c

the lock command removes all available and owned locks, make lock for vari-
able a, remove lock for a, make lock for b, remove lock for b and make lock
for c. After execution process owns only lock of variable c, not the a or the
b variables.

With locking name the lock count increments by one.

List locking

lock (glvn1,glvn2,glvn3)

Here before locking the lock command unlock all owned locks and wait
the moment to lock all listed names simultaneously. If it is possible, and
allowed by locking rules, process creates lock for all listed names and the lock
return execution to next command. For list locking can be locked all listed
names or none of ones.

Each name in list obtain locking count to 1.

Incremental locking

lock +glvn

Incremental locking does not remove any available lock objects and in-
crements lock count by one for specified name. If this name does not already
locked, command make lock and set locking count to 1, otherwise locking
count is incremented by one.

Back operation to decrement locking counter id decremental locking or in-
cremental inlocking. If name was not locked, it doe not anything, if name was
locked, command decrements locking counter by one and if locking counter
couns as 0, command make unlocking name:

lock -glvn

For unlocking operation timeout does not supported.

Process can decrement locking count even for non-locked names, it is not
error and process does nothing.

If process unlocks by one the name locked inside a transaction, the locking
counter is decremented, but real lock object removing made on transaction
end only ($tlevel = 0).

List incremental locking

88 CHAPTER 3. COMMANDS

lock +(a,b,c)

List incremental locking is a combination of list locking and incremental
locking. Process wait possibility to lock listed names and lock and increment
locking counter by one for all specified names or for none of ones.

With list incremental locking process does not remove any of owned lock-
ing objects.

Back operation for list incremental locking is list decremental locking:

lock -(a,b,c)

Here process decrements by one locking counter (if lock present) for all
listed names. If lock object got zero locking counter, process unlock this
name.

Argument indirection

With argument indirection the lockarg is evaluated as string and content
used as the lock command argument. The lockarg need to be one of the lock
possible argument, except empty string.

3.14 MERGE

Command copy data and subscripts from one local or global varibale into
another.

Syntax

M[ERGE][:pc] glvn1=glvn2[,glvn3=glvn4,...]

M[ERGE][:pc] @mergearg

Description

pc Postconditional expression.
glvn Local or global variable name.
mergearg Argument indirection.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional

3.14. MERGE 89

expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

The merge command copy data with subscripts from local or global vari-
able glvn1 into local or global variable glvn2. The merge command cannot
use structured system and system variables or expressions.

As source and target variable names can be specified subscripted names.

The merge command copy data with subscripts from source into target
name from specified source name and continues for every present subscripted
name. The variable’s tree appends into target variable with replacing target
subscripted values if subscripts are equals. For example:

TEMP>s a(1)=1,a(1,2)=12,a(1,3)=13,a(1,2,4)=124

TEMP>s b(2)=2,b(2,1)=21,b(2,2)=22,b(2,4,5)=245

TEMP>w

a(1)=1

a(1,2)=12

a(1,2,4)=124

a(1,3)=13

b(2)=2

b(2,1)=21

b(2,2)=22

b(2,4,5)=245

TEMP>merge b(2)=a(1)

TEMP>w

a(1)=1

a(1,2)=12

a(1,2,4)=124

a(1,3)=13

b(2)=1 ; replaced

b(2,1)=21 ; become unchanged

b(2,2)=12 ; replaced

b(2,2,4)=124 ; inserted

b(2,3)=13 ; inserted

b(2,4,5)=245 ; become unchanged

The merge command does not remove any subscripts from target name.

90 CHAPTER 3. COMMANDS

It is very important to understand to use the merge command to make data’s
copy.

For an argument indirection the value of mergearg evaluated as string and
need to be the merge valid argument:

glvn1=glvn2

The merge command does not allow to merge data from variable’s tree
into herself, in this case is generated the <COMMAND> error. This op-
eration is forbidden by the MUMPS standard. This case is checked even if
specified merging trees into local variables passed by reference. The merge
command can copy data into the same variable only if target differs from
source by last subscript. For example:

USER>s a(1,2)="1.2"

USER>m a(2)=a(1)

USER>w

a(1,2)="1.2"

a(2,2)="1.2"

The merge command does not requires that source or target variables
exists. If source variable does not exists, the merge command does nothing.
If target variable does not exist and source exist, the merge command creates
specified target variable.

The source and target names can be specified as names using any available
forms including any name indirection forms.

3.15 NEW

Creates new variable on the current stack level.

Syntax

N[EW][:pc]

N[EW][:pc] lvn

N[EW][:pc] lvn[,lvn2,...]

N[EW][:pc] (lvn1[,lvn2...])

3.15. NEW 91

N[EW][:pc] lvn=expr[,lvn2=expr2,...]

N[EW][:pc] svn[=expr]

N[EW][:pc] @newarg

Description

pc Postconditional expression.
lvn Unsubscripted local variable name.
svn System variable name accepted by command NEW (see

later).
expr Any valid expression.
newarg Argument indirection.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

The new command create on the current stack level place for the specified
local name. On each stacl level can be variables with the same names and
have divverent values and subscripts. If execution leaves stack level, all
variables was created by new command are leaved and removed, and the
process storage get back to use.

The new command creates the place for variable without assigning the
value by default and evaluating this variable have resalt the <UNDEFINED>
error. All next assignmens to this variable don’t touch variables with same
name on other stack levels. If the new command applies to the already
newed variable, this variable’s data and subscripts are removed and variable
already have undefined value and no subscripts. Here is exception - the new
command with initialization, to make new operation with assignment.

The new command can use only unsibscripted local variables. The new
command cannot operate by structured system variables or system variables
or globals except the $etrap and $estack system variables.

Argumentless new

new[:pc]

92 CHAPTER 3. COMMANDS

Argumentless new command removes all local variables, created on the
current stack level and make current stack level as place for all newly created
local variable even ones will created without new command.

New with name

new[:pc] var1[,var2...]

If the name of local variable is specified, the new command allpies only to
specified name. If this variable has the data, all data and subscripts are lost
and this name places on the current stack level and have undefined value.
Next operations with this name do with this variable instance. If specified
several local variables names, thi new applies to each of ones in left-to-right
order. For example:

new a,b,c

is equivalence of the code

new a new b new c

The difference is only in postconditional axpression usage. The commands

new:expr a,b,c

and

new:expr a new:expr b new:expr c

are differs only by expr evaluating - in the first case expr evaluates only once
and in the second - for each new command. The expression evaluation can
have side effects and program execution can be dependent of expression.

The new command can be applied to list of any argument form except
argumentless form.

Exclusive new

new[:pc] (a,b,c)

3.15. NEW 93

Exclusive new command make this stack level the place for all other local
variables except specified in list. Command removes all local variables are
visible at the current stack level. All this variables saves stack place but lost
all data and get undefined values. All other variables autometically creates
on the current stack level.

Exclusive new command cannot be splitted into several new commands.
This codes:

new (a,b,c)

new (a) new (b) new (c)

are not equivalence, because after second line execution will be lost all vari-
ables, and after first line will be lost all except listed (a, b, c).

New with initialization

new var=expr

This new command’s form is not a part of the MUMPS standard and
is MiniM Language extension. This command is combination of the ordinal
new and set commands. Unlike of the set command, this new command can
assign value of expression only to unsubscripted local variable.

The new with initialization can be used together with $etrap system vari-
able.

Argument indirection

new[:pc] @newarg

The new command with argument indirection evaluates expression newarg
as string and content used as new argument. The newarg content must be
valid new argument except argumentless form.

New with special system variables

new[:pc] svn

The new command can be applied to special system variables:

$etrap Code which is invoked if error occurs.
$estack Counts stack level from last new $estack.
$test Last truth value.
$reference Value of the naked indicator.

94 CHAPTER 3. COMMANDS

Only system variables can be used as a new command argument.

With new svn on the current stack level created place and value for this
svn. Last call to newed svn for read and write are made on this place. If the
svn was not newed on the current stack level, calls to this svn are made to
previous stack level recursively.

The $etrap, $test and $reference variables can be used with new with
initialization.

If the new command applied to $estack variable, $estack sets to 0 and
incremented by 1 on each new stack level is created. Later the value of
$estack can be cleared again. On return to previous stack level MiniM process
restores previous $estack value.

Before system variables $reference and $test allowed be newed, it’s values
can be changed only by direct operation - global access, input-output, truth
checking. But since this variables can be newed, their values can be changed
on the stack unwinding.

3.16 OPEN

The open command creates new input-output device and opens one with
specified parameters.

Syntax

O[PEN][:pc] dev[:(params)][:to][:mnemonicspace]

O[PEN][:pc] dev...[,dev2...,...]

O[PEN][:pc] @openarg

Description

pc Postconditional expression.
dev Device name.
params Device parameters, listed with comma.
to Timeout.
mnemonicspace Expression with routine name to handle mnemonics.
openarg Argument indirection.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified

3.16. OPEN 95

command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

The open command creates and opens specified in the dev expression
device and insert into current opened by process device list. This device
does not makes the current device. If device with this name has already
been opened, the open command does not anything and does not change any
device parameters.

To check the specified device has been opened can be checked structured
system varible ˆ$DEVICE.

MiniM support opening by different process devices with the same name.
For example, several processes can open the same file to read. One process
can open several devices with the same type, for example, several TCP/IP
devices. MiniM process cannot open device with the same name as already
opened. For example, to open the same file twice need to specify file name
in different cases at least in one symbol.

If timeout is specified, process changes the value of $test variable. If
process opens successfully, $test sets to 1, otherwise to 0. If timeout omitted,
the value of $test does not changed. Timeout measures in seconds with
precision in milliseconds. Timeout counts from command execution start
moment.

MiniM process prepare actions dependent of device type. If device type
is not supported, process generate <DEVICE> error.

For example, code opens file with parameters by default and with mnemonic
handler routine:

open "|FILE|c:\temp\dat.txt":::"MNSPACE"

If need to specify two or more device parameters, parentheses are manda-
tory and if only one, not.

If used argument indirection, the value of openarg need to be a valid open
arguments. Empty string does not allowed. The openarg can contain several
open arguments delimited by comma.

Detailed open parameter specifications are dependent of device type and
listed in special chapter.

96 CHAPTER 3. COMMANDS

3.17 QUIT

Command quits current execution context.

Syntax

Q[UIT][:pc]

Q[UIT][:pc] expr

Q[UIT][:pc] @quitarg

Description

pc Postconditional expression.
expr Any expression.
quitarg Argument indirection.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

The quit command terminates current execution context. New execution
context is created on top level while executes commands (in telnet, console,
execute line-by-line file lines), with execution do, for, xecute command and
with evaluating used-defined function ($$-context).

The quit command terminates execution of the last for command in the
same command line.

The quit command terminates the xecute command execution and other
commands of xecute does not reached.

The quit command cannot support several arguments, accepted only first
specified.

The quit command with indirection evaluates the quitarg value as expres-
sion and this value is returned.

If current execution context is argumentless do command and block of
code, the quit command quits to next command after this do command.

If current execution context is user-defined function, the quit command
terminates function execution and value of quit argument used as return
result of this function.

3.18. READ 97

Argumentless quit command does not return anything, quit with argu-
ment return this argument as result. Quit with argument cannot be used in
do, xecute and for context. This cases generates a <COMMAND> error.

Programmer can check need to return value in the quit command by
checking system variable $quit. If $quit has value 0, value return does not
need.

On top-level execution context, for example in teknet or in console, quit
with argument is allowed, but value is lost.

Examples:

TEMP>f i=1:1:5 w i,! q:i=3

1

2

3

TEMP>x "w 12,! q w 34"

12

TEMP>

3.18 READ

Command reads data from device and stores it in variable.

Syntax

R[EAD][:pc] glvn[#len][:to]

R[EAD][:pc] *glvn[:to]

R[EAD][:pc] /mnemonic[(params)]

R[EAD][:pc] ?intexpr

R[EAD][:pc] constexpr

R[EAD][:pc] format

R[EAD][:pc] readarg[,readarg2,...]

R[EAD][:pc] @indreadarg

Description

pc Postconditional expression.

98 CHAPTER 3. COMMANDS

glvn Local or global variable name to place data to.
len Count of bytes to read.
to Timeout to wait input data..
constexpr String constant.
mnemonic Mnemonic name to read using it.
format Formatting symbol.
readarg One of read argument form.
indreadarg Argument indirection.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

The read command accepts bytes from current input-output device. Com-
mand can read several bytes and one symbol, can output data and format
output.

The read command can have optional parameters to specify wait timeout
and length limit.

The read command use current device terminator to detect end of read.
If terminator reached in input byte sequence, command end read and termi-
nator does not placed into read result.

After end of read command places into special system variable $key last
input.

For example, by default most of used devices have text mode and read
terminates by entering ENTER symbol. Here into $key placed the code 13,
if reached ESCAPE key, placed code 27.

The read command can use or not specified timeout, it is dependent of
the device type.

If read timeout is specified, it is evaluated as number and counts as a sec-
onds with milliseconds. The wait timeout starts from read command begin.

If timeout is specified, the read command sets the $test value indicating
read has complete before timeout expired. If read terminates by timeout
ends, the $test sets to 0, otherwise to 1.

Read length and timeout are optional, but if specified it need to be in
order length and then timeout. If length read not specified and terminator or

3.18. READ 99

input end are not reached, the read command reads up to maximum string
length, 32 Kb. If timeput is not specified, read command can wait input
unlimited time, or ends if terminator or input end are reached.

Read string

read glvn

If local or global variable is specified as read argument, command accepr
input and place data into this variable as string. The read is executes using
current device-type specific actions, specified timeout and read limit, read
mode, and terminators.

As glvn can be used local or global variable and with or without subscripts.

Read one symbol code

read *glvn

If specified special symbol ”*” before local or global variable, the read
command reads only one byte and places code into this variable as number.
If timeout expired, used code -1. For example:

TEMP>r *ch

w

TEMP>w

ch=119

Input symbol code counts from 0 to 255 inclusively.

If read timeout is specified, command sets the $test value, if read success-
ful, sets to 1, otherwise to 0.

Tabbed output

Tabbed oitput is specified by special symbol ”?” with following expres-
sion, which evaluates as integer. It is defined position in line to shift to.
For example, this is supported by MiniM console and telnet devices. Other
devices support tabbed output dependent of device type.

The tabbing expression evaluates only as integer and specifies the position
in line and device need to position current output pointer. Depending of
device type it can be spaces or device-special positioning. MiniM counts
current position in line (as it is possible) using special system variables $X
and $Y.

100 CHAPTER 3. COMMANDS

If evaluated tabstop expression is less then or equal zero, tabbing does
nothing. Otherwize device outputs appropriate spaces to shift to specified
position. The position can be over the line size, and output continues from
the next line. Next output continues from resulting position. For example:

r #!!!,?15,"Enter name: ",name

This code clears the screen, outputs three empty line, shift caret to po-
sition 15 in line, outputs the string ”Enter name: ” and wait string to place
to local variable name.

Mnemonic usage

If mnemonis is specified, the name should be used as is, without expression
or indirection. Tha values passed to mnemonic, are passed by value only, not
by reference. The mnemonic name need to be preceded by slash ”/”. For
example:

read /CUP(10,20),answer

Here command calls mnemonic with name CUP in current mnemonic
handling routine and pass two parameters.

If device have not assigned mnemonic routine, mnamonic calling generates
the <MNEMSPACE> error, MDC code 26. If program call mnemonic not
supported by mnemonic routine, it generates <NOLINE> error.

Output constant string

If the read command parameter is constant string, this string outputs to
current device. For example:

TEMP>r "Enter your name: ",name

Enter your name: John

TEMP>w

name="John"

TEMP>

Here the string ”Enter your name: ” outputs first and read command
accepts next input into the name variable.

Formatting

To format output there can be used following symbols:

3.19. SET 101

Clear the screen, flush buffers, form feed, or other
device-specific action to make the similar output clear-
ing.

! Output the line feed symbol.

For text mode devices MiniM outputs bytes $c(13),$c(10), and for binary
mode devices outputs $c(10) only.

Formatting symbols can be delimited by comma, but it is not mandatory,
For example:

read #!!!

here first clears the screen, reposition caret to first line and outputs three
empty lines.

Argument indirection

The read command can accept argument indirection. The indreadarg
should be expression, it evaluates as string and content is used as read com-
mand arguments. Empty string does not allowed. Argument indirection can
be use as such as other arguments with comma delimited.

3.19 SET

Assigns the value to variables.

Syntax

S[ET][:pc] setleft=expr[,setleft2=expr2]

S[ET][:pc] (setleft[,setleft2...])=expr

S[ET][:pc] @setarg

Description

pc Postconditional expression.
setleft Assinment target.
expr Expression to evaluate and assign the value.
setarg Argument indirection.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is

102 CHAPTER 3. COMMANDS

0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

The set command evaluates expression expr and assigns the result to
specified setleft target. If setleft are listed more than one, the expr expression
evaluates only once and targets assigns in left-to-right order as listed. For
example:

TEMP>s (a,b,c)=123

TEMP>w

a=123

b=123

c=123

TEMP>s (a,b,c)=$i(d)

TEMP>w

a=1

b=1

c=1

d=1

The set command can use as setleft target the following:

lvn Local variable name, with or without subscripts.
gvn Global variable name, with or without subscripts.
$KEY System variable $KEY.
$X System variable $X.
$Y System variable $Y.
$DEVICE System variable $DEVICE.
$ECODE System variable $ECODE.
$ETRAP System variable $ETRAP.
$ZTRAP System variable $ZTRAP.
$extract() Function $extract() with local or global variable as first

argument.
$list() Function $list() with local or global variable as first ar-

gument.
$piece() Function $piece() with local or global variable as first

argument.

3.19. SET 103

$qsubscript() Function $qsubscript() with local or global variable as
first argument.

$bit() Function $bit() with local or global variable as first ar-
gument.

Local variable assignment

If setleft is a local variable name, the set command writes data to specified
local name. If name does not exist, it is created, otherwise overwritten.

Here can be specified local names with or without subscripts.

The set command use local variable place, defined by the new command
and on the specified by new command stack level.

Local variable name can be specified using name indirection.

Global variable assignment

If setleft is a global variable name, the set command writes data to
database. If this variable does not exist, it is created, otherwise overwritten.

The global variable name can be specified with database name. If the
database name is omitted, the set command use the current database.

The global name can be specified with or without subscripts, and assign-
ment does not affect other subscripts.

The global name can be specified using name indirection or using naled
indicator syntax.

If journaling for current process and for database of this global name is
enabled, process make a journal record about this assignment and previous
value. This set operation can be rolled back later bu trollback command.

Side effect of global name assignment is changing of naked indicator.
Current value of the naked indicator is available as global name in system
variable $zreference.

System variable $key assignment

When $key is assigned, it affect only for current input-output device only.
When current device is changed, $key value changes value too.

System variables $X and $Y assignment

When system variables $x and $y assigned, the value of evaluated expr
expression counts as integers and writes to $x and $y. Side effects are de-
pendent of device type. The $x and $y changes are affected only for current

104 CHAPTER 3. COMMANDS

device. Generally, $x and $y converts to caret position change. For example,
if it is MiniM console window, caret position on window is changed, and if it
is telnet device, MiniM sends to client special escape sequences to reposition
caret. Actual caret changes are dependent from telnet client.

System variable $ecode assignment

When system variable $ecode assigned, this value stores in special variable
$ecode. Previous value of $ecode be lost.

After this into sustem variable $zerror assigned string ”<ECODETRAP>”
and process generate error <ECODETRAP>.

If $ecode assigned by empty string, no any errors are generated, the value
of $ecode got empty string and value of $zerror does not changes.

System variable $etrap assignment

When the system variable $etrap assigned, it is done on the stack level,
where this variable has created by the new command, or on the top stack
level. Previous value of this variable on this stack level is lost.

On execution the content of system variable $etrap is used as code line
to execute when error occurs to handle error. On siisgnment the syntax of
$etrap content does not checked.

System variable $ztrap assigmnent

System variable $ztrap assignment is a synonym to assign to $etrap and
make new command to $estack and $etrap.

The error handler assigned to the $ztrap variable is not independent error
handler, but it is alternate method to assign to $estack and $etrap variables.
Error handler assigned to $ztrap, executes by goto command. When $ztrap
assigned, process analize content and make appropriate assignment to $estack
and $etrap variables in dependent of $ztrap content.

Content of $ztrap can be label or label with leading ”*” symbol.

If $ztrap assigned to label only, it is equals to execute the code below:

new $estack

new $etrap

set $etrap="g:’$es "_$ztrap

On error it make stack unrolling to stack level where $ztrap assigned and
make goto command to specified label.

When the first symbol is ”*”, it is equal to execute the code below:

3.19. SET 105

set $etrap="g "_$e($ztrap,2,$l($ztrap))

On error this code executes goto command on the stack level where the
error is occured.

For example:

USER>s $zt="err^errhandler"

USER>w $et

g:’$es err^errhandler

USER>s $zt="*err^errhandler"

USER>w $et

g err^errhandler

If $ztrap value is not on ow allowed, process generates the error <SYNTAX>.

Function $list() assignment

When the function $list() is assigned, process assign data into variable
which is the first argument of $list(), and this content makes a list structure.

If this variable has been undefined, it creates, if not, overwrites and used
as list structure.

When used 1-argument form of $list() function, it makes changes of the
first list element or one is created.

When used 2-argument form of $list() function, it makes changes of the
list element with position specified in second argument. If second argument
is 0, function change first element. if second argument is -1, function change
last element. The specified list element after assignment gets defined value
with expr content.

If specified element show to position over the end of list in variable, all
middle elements are created and gets the undefined value.

When used 3-argument form of $list() function, it make replace sublist
of source list structure from position specified in the 2 argument by position
specified in the 3 argument. If 2-nd argument is -1, it replace sublist from
last element, and 3-rd argument is ignored.

If second argument is less then -1, assignment generates a <RANGE>
error.

106 CHAPTER 3. COMMANDS

When assignment determines the variable content is not valid list struc-
tire, it generates the <LIST> error.

When assignment determines that the full list content after assignment
need to be more than 23 Kb? assignment does not made anf generated the
<MAXSTRING> error.

Examples:

TEMP>s $li(list)=2

TEMP>f i=1:1:$ll(list) w $lg(list,i),!

2

TEMP>k s $li(list,4)="a"

TEMP>f i=1:1:$ll(list) w $lg(list,i,"def"),!

def

def

def

a

TEMP>s $li(list,2,3)=$lb("w","r")

TEMP>f i=1:1:$ll(list) w $lg(list,i,"def"),!

def

w

r

a

So, to remove list elements from n to m, need to be used 3-argument
form:

TEMP>s list=$lb(1,2,3,4) s $li(list,2,3)=""

TEMP>f i=1:1:$ll(list) w $lg(list,i,"def"),!

1

4

And, to make the list element undefined, in need to be replaced by list
with one undefined element:

3.19. SET 107

TEMP>s list=$lb(1,2,3,4)

TEMP>s $li(list,3,3)=$lb()

TEMP>f i=1:1:$ll(list) w $lg(list,i,"def"),!

1

2

def

4

If variable is a global variable, assignment make changes of naked indica-
tor value.

As first argument can be specified local or global variable name, with or
without subscripts.

Function $piece() assignment

When the function $piece is assigned, it makes changes in variable speci-
fied in the first argument. It make a string with specified in 2-nd argument
delimiter, 3 argument show what piece number of string need to replace, and
4 argument show position of last piece to replace. If variable contein less
then need pieces, it padded by empty string with specified delimiter.

If variable has undefined value, it creates and counts as empty string,
otherwise overwrites.

As first argument can be specified local or global variable name, with or
without subscripts.

Examples:

TEMP>s str="a,b,c" s $p(str,",")="d" w str

d,b,c

TEMP>s str="a,b,c" s $p(str,",",2)="d" w str

a,d,c

TEMP>s str="a,b,c" s $p(str,",",1,2)="d" w str

d,c

TEMP>s str="a,b,c" s $p(str,",",8)="d" w str

a,b,c,,,,,d

108 CHAPTER 3. COMMANDS

Function $piece can use as delimiter any string, empty, one or more sym-
bols. For example:

TEMP>s str="a,,b,,c" s $p(str,",,",2)="d" w str

a,,d,,c

TEMP>s str="a,,b,,c" s $p(str,"",8)="d" w str

a,,b,,cd

If variable is a global variable, assignment make changes of naked indica-
tor value.

Function $extract() assignment

When the $extract() assigned, it make changes in variable specified in
first argument. 2-nd and 3-rd arguments are optional and specifies symbol
position to replace from and to. The assigned value can be other length of
substring to replace, and it make axpanding or collapsing string.

If 2-nd argument is not specified, it counts as 1, and replaces first symbol
in the string. Otherwise replace makes from specified position.

If 3-rd argument is not specified, it counts as equal to 2-nd argument and
makes changes of one symbol. Otherwise it show last position to replace.

If 2-nd argument is negative, or 3-rd argument is less than 2-nd, function
assignment does not make changes and naked indicator does not change.

If before assignment this variable has undefined value, this variable cre-
ates.

If need to replace substring after last available symbol, source string is
padded by space symbols as need.

Examples:

TEMP>s str="abc",$e(str)=1 w

str="1bc"

TEMP>s str="abc",$e(str,-2)=1 w

str="abc"

TEMP>s str="abc",$e(str,1,2)=1 w

str="1c"

TEMP>s str="abc",$e(str,5)=1 w

3.19. SET 109

str="abc 1"

TEMP>s str="abc",$e(str,5,8)=1 w

str="abc 1"

If variable is a global variable, assignment make changes of naked indica-
tor value.

As first argument can be specified local or global variable name, with or
without subscripts.

Function $qsubscript() assignment

When the $qsubscript() function is assigned, it make changes in variable
specified in first argument. Here variable content counts as name of variable.
Assignment make changes in specified in the 2-nd argument part of this
name. If 2-nd argument is -1, it mean the variable name is a global name and
replaces the database name. If 2-nd argument is 0, it replace the variable
name, otherwise it is subsctipt number. If original name has number of
subscripts less than need, assignment adds need subscripts as empty strings.

Examples:

TEMP>s name=$na(abc(1,2,3))

TEMP>s $qs(name,4)=4

TEMP>w

name="abc(1,2,3,4)"

TEMP>s $qs(name,0)="def"

TEMP>w

name="def(1,2,3,4)"

TEMP>s $qs(name,-1)="ggg"

TEMP>w

name="^|"ggg"|def(1,2,3,4)"

TEMP>s $qs(name,8)="8"

TEMP>w

name="^|"ggg"|def(1,2,3,4,"","","",8)"

110 CHAPTER 3. COMMANDS

If arguments are incorrect variable name or unsupported subscript num-
ber, this assignment generates a <FUNCTION> error.

If variable is a global variable, assignment make changes of naked indica-
tor value.

As first argument can be specified local or global variable name, with or
without subscripts.

Function $bit() assignment

When the function $bit() is assigned, it must have first argument a local
or global variable name. Assignment threats value as a bitstring structure,
and changes in this bit string one bit. Bitstring is a structure with special
format and can use compression as need. If name is a global name and for
current process and database journaling is enabled, it makes a journal record
about bit change and about previous bit value. Record contain only logical
value and count undefined or empty string, or coll outside bitstring that bit
has logical value 0.

The 2-nd argument is a bit position and should be between 1 and 262104
inclusively. Assignable expression casts to integer and compares with 0. If it
is 0, function sets logical bit 0, otherwize logical bit 1.

If before assignment variable has undefined value, it creates. If vari-
able contains data not in bitstring format, it generates an <INVALID BIT
STRING> error. If specified unsupported bit position, assignment generates
error <RANGE>.

Function $bit() assignment made as atomic operation, no other process
can change value between current process reads and writes bit value.

If changes are made inside transaction context, the trollback command
can roll back logical bit state changed in transaction and does not roll back
changes made by other processes.

Examples:

USER>s $bit(abc,3)=1

USER>s $bit(abc,5)=1

USER>f i=1:1:10 w i," : ",$bit(abc,i),!

1 : 0

2 : 0

3 : 1

3.19. SET 111

4 : 0

5 : 1

6 : 0

7 : 0

8 : 0

9 : 0

10 : 0

USER>w $bitcount(abc)

5

USER>w $bitcount(abc,1)

2

USER>w $bitcount(abc,0)

3

Here makes write into undefined variable one logical bit, to position 3
and after this to position 5. After this makes read logical bit values from 1
to 10. For bits who does not sets to 1, it counts as 0 bits. And common bit
count is 5, 1-bits are 2 and zero bits are 3 by total.

If variable is a global variable, assignment make changes of naked indica-
tor value.

As first argument can be specified local or global variable name, with or
without subscripts.

The set argument indirection

When used argument indirection, the value of setarg is evaluated as a
string and used as the set command argument. This string need have one or
more valid set command arguments in the form:

setleft = expr

The setleft expression can be only on of allowed.

The setarg can containt argument indirection too, recursively. For exam-
ple:

TEMP>s setarg="a=$i(b)"

TEMP>s @setarg

TEMP>w

112 CHAPTER 3. COMMANDS

a=1

b=1

setarg="a=$i(b)"

3.20 TCOMMIT

Makes transaction level completed.

Syntax

TC[OMMIT][:pc]

Description

pc Postconditional expression.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

The tcommit command make a journal record to confirm transaction level
and decrements transaction level.

If transaction level is 0, command generates the <COMMAND> error.

If transaction level after command is 0, tha changes made cannot be rolled
back. Process make journal record about all transaction levels are complete
and internal transaction sequence number is changed.

To commit all transaction levels it need to call tcommit command with
$tlevel times repeatedly.

Command does not support arguments or argument indirection.

3.21 TROLLBACK

Roll back all globals changes made in transaction.

Syntax

TRO[LLBACK][:pc]

Description

3.22. TSTART 113

pc Postconditional expression.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

The trollback command rolls back all global changes made within a trans-
action and process changes current transaction sequence number.

All globals changes rolled back to state before transaction starts. States
counts as phisical or logical states dependent of made operations.

The trollback command does not rolls back changes made by $increment
function.

If before execution trollback command current transaction context is 0
(no transaction state), this command does nothing.

MiniM does not supports the trollback parameters. If command param-
eter is specified, process generates <UNIMPLEMENTED> error on execu-
tion.

Argument indirection does not supported too.

3.22 TSTART

Command creates new transaction or new transaction level.

Syntax

TS[TART][:pc]

Description

pc Postconditional expression.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

114 CHAPTER 3. COMMANDS

The tstart command starts new transaction level. Current transaction
level available in the $tlevel system variable. On process start transaction
level is 0 and increments with each tstart command. Non-transaction con-
text ($tlevel=0) is supported for compatibility with prior writte MUMPS
programs, does not used transactions.

Each transaction call increments value of $tlevel by one. Maximum trans-
action level supported by MiniM is 255. If program try to exeed thi limit,
process generates the <TLEVEL> error. For example:

TEMP>f i=1:1:300 ts

<TLEVEL>

TEMP>w $tl

255

TEMP>tro

TEMP>w $tl

0

TEMP>w i

256

The tstart command makes a special journal record about current process
number, transaction level and current transaction sequence number. Each
process and transaction have unique transaction sequence number to identify
different journal records. It is used by trollback command and automatic
database restore process on server start.

MiniM does not support tstart arguments and argument indirection. On
execution command with argument process generates <UNIMPLEMENTED>
error. For example:

TEMP>ts

TEMP>w $tl

1

TEMP>tro

TEMP>w $tl

0

TEMP>

3.23. USE 115

3.23 USE

Applies parameters to device and make device current.

Syntax

U[SE][:pc] dev[:param][,dev2[:param2],...]

U[SE][:pc] dev[:(params)]

U[SE][:pc] dev[:[params]:mnemonicspace]

U[SE][:pc] @usearg

pc Postconditional expression.
dev Device name.
param Device parameter.
params Device parameters delimited with colon.
mnemonicspace Expression with routine name.
usearg Argument indirection.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

The use command applies device parameters to specified device and make
this device current. Device need to be opened by current process first or be
created as principal device on proces start (default device). If process does
not open this device first, the use command generates <NOTOPEN> error.

All input and output actions done using current device, and to operate
several devices need to make appropriate device current before read or write
commands.

In interactive mode (MiniM Console (|CON|), telnet (|TNT|) or standard
(|STD|)) MiniM process automatically make principal device current device,
using pseudocode

use $principal

116 CHAPTER 3. COMMANDS

For use commands all values pc, dev, mnemonicspace or usearg can be
specified as expressions. Before execution use command this expressions are
evaluates iun left-to-right order.

The use command can be applied to any already opened device and to
current device repeatedly. If use command have several arguments delimited
by comma, command use specified devices sequentially, in left-to-right order.
And after this current device id last device in arguments.

The mnemonicspace parameter is a routine name to handle mnemonics.
For example:

use $io::"COMMON"

use $io:():"COMMON"

Here use command assign to $io device mnemonic routine ˆCOMMON
and does not change currently used device parameters.

On argument indirection need the usearg be a valid use argument or
arguments. Before execution this expression evaluates as a string and content
used as use arguments.

All device parameters are device-type specific and listed in special chapter
about devices.

After use command current device name is in special system variable $io.
This variable returns current device name without parameters and without
mnemonic routine.

3.24 WRITE

Command output data into current device.

Syntax

W[RITE][:pc]

W[RITE][:pc] expr

W[RITE][:pc] *intexpr

W[RITE][:pc] ?intexpr

W[RITE][:pc] writeformat

W[RITE][:pc] /mnemonic[(params)]

3.24. WRITE 117

W[RITE][:pc] writearg[,writearg2,...]

W[RITE][:pc] @indwritearg

Description

pc Postconditional expression.
expr Expression to evaluate and output as string.
intexpr Expression to evaluate as integer.
writeformat Formatting symbol.
mnemonic Mnemonic name.
params One or more mnemonic parameters.
writearg One or more possible command arguments.
indwritearg Argument indirection.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

The write command send data into current device and control formatting.
The write command always use current device only and mnemonic uses only
routine assigned as mnemonic routine for current device.

Argumentless write

Argumentless write command write out all available local variables of
current process, which are visible on current stack level and have defined
value.

Argumentless write command writes out variables in alphabetical sorting
order by name and subscripts in index sorting order.

If variable has string value in internal MiniM representation, it outputs
as string inside double quotes (”). Otherwise data writes out as number,
without quotes.

To make correct syntax for variable values need to be used special system
function $zquote() to double quotes inside string and add leading and trailing
quotes if value is not a number.

Examples:

TEMP>s a(1)=1,b(1)="1",b("1 1")="1 1"

118 CHAPTER 3. COMMANDS

TEMP>w

a(1)=1

b(1)="1"

b("1 1")="1 1"

TEMP>

Here values of a(1) and b(1) outputs with different formatting, because
internal data representations are different. First case is a number and second
case is a string.

Write out string

To write out data as string, command evaluates an expression as string
and sends byte sequentially to current device as is. For example:

TEMP>w "2*2=",2*2

2*2=4

Here write command has 2 arguments, first evaluates as string and com-
mand output ”2*2=”, and second is expression, command evaluates as string
and output result of 2*2.

Write out symbol of code

The write command accept special symbol * to specifi next is expression
to evaluate as a number and count as symbol’s code. It number need to be
integer between 0 and 255 generally to specify byte code to output. Format
conversion is like $char() function with one argument:

TEMP>w *65

A

TEMP>w $c(65)

A

The second case equals to first case by byte sequence to output, but
differs from first case in $X and $Y recalculations. In the first case the write
command does not recalculate $X and $Y values and in second do.

Tabbed output

Tabbed oitput is specified by special symbol ”?” with following expres-
sion, which evaluates as integer. It is defined position in line to shift to.

3.24. WRITE 119

For example, this is supported by MiniM console and telnet devices. Other
devices support tabbed output dependent of device type. The tabbing ex-
pression evaluates only as integer and specifies the position in line and device
need to position current output pointer. Depending of device type it can be
spaces or device-special positioning. MiniM counts current position in line
(as it is possible) using special system variables $X and $Y.

If evaluated tabstop expression is less then or equal zero, tabbing does
nothing. Otherwize device outputs appropriate spaces to shift to specified
position. The position can be over the line size, and output continues from
the next line. Next output continues from resulting position. For example:

Examples:

TEMP>w ?2,"*",?10,"*"

* *

TEMP>s tab1=3,tab2=10

TEMP>w ?tab1,"*",?tab2,"*"

* *

Here write command make tabbed output to position 2, writes symbol
”*”, next shift position to 10, and symbol ”*” again. In the second case
tabbed positions are specified by expressions. All expressions used in argu-
ments are evaluates in left-to-right order.

Formatting

To format output there can be used following symbols:

Clear the screen, flush buffers, form feed, or other
device-specific action to make the similar output clear-
ing.

! Output the line feed symbol.

For text mode devices MiniM outputs bytes $c(13),$c(10), and for binary
mode devices outputs $c(10) only.

Formatting symbols can be delimited by comma, but it is not mandatory,
For example:

write #!!!

120 CHAPTER 3. COMMANDS

here first clears the screen, reposition caret to first line and outputs three
empty lines.

Mnemonic usage

If mnemonis is specified, the name should be used as is, without expression
or indirection. Tha values passed to mnemonic, are passed by value only, not
by reference. The mnemonic name need to be preceded by slash ”/”. For
example:

write /CUP(10,20)

Here command call mnemonic with name CUP in current mnemonic han-
dling routine and pass two parameters.

If device has not assigned mnemonic routine, mnamonic calling generates
the <MNEMSPACE> error, MDC code 26. If program call mnemonic not
supported by mnemonic routine, it generates <NOLINE> error.

Argument indirection

The write command supports argument indirection. The indwritearg is
evaluated as string and used as write arguments. Empty string does not
allowed. Argument indirection can be used with other available argument
forms with comma delimiting. For example:

TEMP>write #,/CUP(10,20),@line,!

USER>f expr="2*2,!","5*5,!","6*6,!" w expr," : ",@expr

2*2,! : 4

5*5,! : 25

6*6,! : 36

3.25 XECUTE

Executes a string as a commands line.

Syntax

X[ECUTE][:pc1] expr[:pc2][,expr2,...]

X[ECUTE][:pc] @xarg

Description

pc Postconditional expression.
expr Expression to evaluate and execute as commands.
xarg Argument indirection.

3.25. XECUTE 121

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

The xecute command evaluate expression expr and use content as com-
mand sequence. The expr evaluates after evaluating appropriate postcondi-
tional expression if one specified.

The expr content can have no any commands and containt comment.

If xecute command execute argument, it is created new stack level. After
full command line execution this stack level leaves. If on this stack level has
been created some local variable using new command, they are destroyed.

The xecute command is much similar like do execution, for subroutines in
one command line. The system function $stack show this execution context
is from command xecute, not from do command. For example:

TEMP>x "n a s a=1"

TEMP>w

TEMP>

If postconditional expression pc1 present, it evaluates as integer and com-
pare with 0. If it is not 0, the xecute command applies to all available argu-
ments delimited by comma. If postconditional expression pc2 is present, it
evaluates as integer and compares with 0. If it is 0, command does not use
this argument and continue analize next argument. For example:

TEMP>x "w 1":1

1

TEMP>x "w 1":0

TEMP>

On xecute command execution the system variable $test does not stacked.
If it is changed, it changes on the previous stack level. See for details $test
documentation.

122 CHAPTER 3. COMMANDS

Chapter 4

Z - Commands

4.1 ZNEW

The znew command makes new place of specified local variable on the current
stack level with copying all available data from variable with same name
including subscripts.

Syntax

ZNEW[:pc]

ZNEW[:pc] lvn[,lvn2,...]

ZNEW[:pc] (lvn[,lvn2,...])

ZNEW[:pc] @argindir

Description

lvn Local variable name to make local copy.
pc Postconditional expression.
argindir Argument indirection

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

The znew command is the same as new command except it stores in
created place all existent data of variable including subscripts. The new

123

124 CHAPTER 4. Z - COMMANDS

command has result only place created, all data undefined.

Argumentless znew command applies to all visible on the current stack
level local variables. Argumentless znew command does not affect to nonex-
istent names unlike new command.

Exclusive form of znew command applies to all visible on the current
stack level local variables except listed in argument. Exclusive form of znew
command does not affect to nonexistent names unlike new command.

Examples:

USER>s a=0,a(1)=1 x "znew w"

a=0

a(1)=1

USER>s a=0,a(1)=1 x "znew s a(2)=2 w" w

a=0

a(1)=1

a(2)=2

a=0

a(1)=1

USER>s a=0,a(1)=1,b="b" x "znew s a(2)=2 w" w

a=0

a(1)=1

a(2)=2

b="b"

a=0

a(1)=1

b="b"

USER>s a=0,a(1)=1,b="b" x "znew s a(2)=2 s b=""c"" w" w

a=0

a(1)=1

a(2)=2

b="c"

a=0

a(1)=1

b="b"

USER>s a=0,a(1)=1,b="b" x "znew a s a(2)=2 s b=""c"" w" w

a=0

4.2. ZNSPACE 125

a(1)=1

a(2)=2

b="c"

a=0

a(1)=1

b="c"

USER>s a=1,b=2 x "znew (a) s a=3,b=4,c=5 w w !" w

a=3

b=4

c=5

a=3

b=2

c=5

The znew command is not a part od MUMPS standard, it need to take a
proper use to write portable programs. Some other MUMPS implementations
can support znew command with the same syntax and behavior.

Command can use only unsubscripted local variables names.

If specified argument indirection, expression of argindir is evaluated as
string and content need to be valid znew argument[s], listed by comma.

4.2 ZNSPACE

Command switch current database to specified.

Syntax

ZN[SPACE][:pc] expr[,expr]

ZN[SPACE][:pc] @argindir

Description

expr Expression with database name to switch to.
pc Postconditional expression.
argindir Argument indirection.

Command make specified database current database. Database name
evaluates as an expression first. The database name is case-insencitive. If

126 CHAPTER 4. Z - COMMANDS

this database name does not defined for current MiniM instance, process
generates <NAMESPACE> error, MDC code 26 (call to nonexisting envi-
ronment).

TEMP>zn "not exist "

<NAMESPACE>

TEMP>w $ec

,M26,

TEMP>

If current database is the same to switch to, the znspace command does
nothing. Side effect to switch database is naked indicator clearing.

USER>w $d(^a)

10

USER>w $zr

^a

USER>zn "%sys"

%SYS>w $zr

%SYS>

USER>znspace @"""%sys"""

%SYS>

Current database name is returned by special system variable $znspace.

TEMP>w $znspace

TEMP

TEMP>

4.3 ZPRINT

Command outputs lines of routine to the current device as specified in com-
mand’s argument.

Syntax

4.3. ZPRINT 127

ZP[RINT][:pc]

ZP[RINT][:pc] [label][+offset][ˆ[database]routine]

ZP[RINT][:pc] [label1][+offset1][ˆ[database]routine]:[label2][+offset2]

ZP[RINT][:pc] @argindir

Definition

label Optional label from where need to be counted lines of
routine.

offset Offset from label.
database Database name from where need to be read routine con-

tent.
routine Name of routine to output.
argindir Value with argument, indirection.

Command ZPRINT may be used in the following forms:

1. In argumentless form command outputs to the current device all con-
tent of the current routine.

2. If command got only routine name, command outputs all content of
the routine specified.

3. If first label is present, command outputs from the specified label and
only one line.

4. If both parts are present, command outputs lines from the first line to
the second line including ones.

Before writing content command check that both labels exists in the
routine. If one of line (first or second) does not contains in the routine, or
second line corresponds before first line, command does nothing.

Command accepts first label in the same format as function $TEXT, and
any part of argument may be specified using indirection. Any part of first and
second part may be omitted, and command counts lines using only available
specification. If argument does not contains routine name, command uses
currently executed routine. If database name is omitted, command uses
current database name.

USER>zp

128 CHAPTER 4. Z - COMMANDS

Command does nothing becouse top-level of interactive device does not
have current routine.

USER>zp ^uuuunnnn

Command does nothing becouse argument specify unexisting routine name.

USER>zp ^%DBCRC

%DBCRC ; MiniM system utilities, Check database CRC

n ans,list,i,dbname,err

s list=$v("db",15)

w !,"MiniM database CRC check utility",!

start

w !,"Available database list:",!

f i=1:1:$l(list,"*") w " ",i,") ",$p(list,"*",i)

r !,"Select database number to check: ",ans,!

i ’+ans q

s dbname=$p(list,"*",ans)

i dbname="" q

s err=$v("db",21,dbname)

i err=0 w "Database ",dbname," CRC check database defect.",!

e w "Database ",dbname," CRC check OK.",!

g start

USER>

Command outputs entire routine content becouse command argument
does not contains first and second line limits.

USER>zp +3^%DBCRC

s list=$v("db",15)

Command outputs only the one specified line.

USER>zp +2^%DBCRC:+4

n ans,list,i,dbname,err

s list=$v("db",15)

w !,"MiniM database CRC check utility",!

Command writes lines of routine from first to second including ones and
uses offsets.

4.4. ZSYNC 129

USER>zp start^%DBCRC:start+4

start

w !,"Available database list:",!

f i=1:1:$l(list,"*") w " ",i,") ",$p(list,"*",i)

r !,"Select database number to check: ",ans,!

i ’+ans q

Command writes lines of routine from first to second including ones and
uses labels.

It is much important to know that the second part of argument does not
use routine name. Command uses name of routine from the first part of
argument or uses currently executed routine.

Command ZPRINT use only INT routines and does not use MAC or
INC routine with the same name. If database contains compiled bytecode
and does not contain source code of INT routine, command does nothing.

4.4 ZSYNC

Command activate a write and journal daemons.

Syntax

ZSYNC[:pc]

Description

pc Postconditional expression.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

The zsync command send signals to write and journal daemons to flush
changed cache blocks and available journal buffer independently of current
internal daemon conditions. Control returns immediately after signals sent.

Daemons got signal and execute write changed cache blocks and journal
buffer.

130 CHAPTER 4. Z - COMMANDS

Daemons write changed data for all MiniM instrance, not only for signaled
process.

If control return from zsync command, this does not mean flush is done,
it is only signals are sent.

Command invented to speed up database flushing in special cases.

4.5 ZTRAP

Command generates the default or specified error.

Syntax

ZT[RAP][:pc]

ZT[RAP][:pc] expr

ZT[RAP][:pc] @argindir

Description

expr Expression to use to make error name.
pc Postconditional expression.
argindir Argument infirection.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

Argumentless form of ztrap command generates the <ZTRAP> error.

Argumented form of ztrap command generates error with text specified
in argument. The expr is evaluated as a string and command get forst up to
32 symbols and constructs error name as symbol Z and first 32 symbols from
expr value. Command adds to current $ecode value string ZZTRAP.

Examples:

USER>ztrap

<ZTRAP>

4.6. ZWRITE 131

USER>w $ze

<ZTRAP>

USER>w $ec

,ZZTRAP,

USER>ztrap "MY ERROR"

<ZMY ERROR>

USER>w $ec

,ZZTRAP,ZZTRAP,

USER>w $ze

<ZMY ERROR>

USER>s errcode="Failed"

USER>ztrap @"errcode"

<ZFailed>

4.6 ZWRITE

Command writes to current device all visible local variables or specified local
or global variable with subscripts.

Syntax

ZW[RITE][:pc]

ZW[RITE][:pc] glvn[,glvn2,...]

ZW[RITE][:pc] @argindir

Description

glvn Local or global variable name to write out.
pc Postconditional expression
argindir Argument indirection.

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

Argumentless form of the zwrite command write to current device all

132 CHAPTER 4. Z - COMMANDS

visible local variables with subscripts.

Examples:

TEMP>k

TEMP>s a="a",a(1)="a1",b="b",b(1)="b1"

TEMP>zw

a="a"

a(1)="a1"

b="b"

b(1)="b1"

TEMP>

TEMP>zw @"a,b"

a="a"

a(1)="a1"

b="b"

b(1)="b1"

Argumented form of zwrite command write to current device specified
local or global variable with subscripts.

TEMP>zw a

a="a"

a(1)="a1"

TEMP>zw a(1)

a(1)="a1"

TEMP>

In the case of specified variable does not have value or any subscripts,
the zwrite command does nothing with this variable and does not generate
<UNDEFINED> error.

TEMP>k

4.7. ZZDUMP 133

TEMP>s a(1)=1

TEMP>zw

a(1)=1

TEMP>zw a

a(1)=1

TEMP>

The zwrite command outputs subscripts in index sorting order.

If command have several arguments, command write all specified variables
in left-to-right order.

TEMP>k

TEMP>s a="a",b="b",c="c",d="d"

TEMP>zw a,c

a="a"

c="c"

TEMP>

4.7 ZZDUMP

Command write to current device hexadecimal dump of string’s expres-
sion representation.

Syntax

ZZDUMP[:pc] expr[,expr2,...]

ZZDUMP[:pc] @argindir

Description

expr Expression to evaluate as string and to dump.
pc Postconditional expression.
argindir Argument indirection.

134 CHAPTER 4. Z - COMMANDS

Postconditional expression evaluates before command executes and result
compares with 0. If expression is not 0, command executes. If expression is
0, command is skipped and executes next command in string. If specified
command with several arguments delimited with comma, postconditional
expression applied to all arguments. Command applies to argument in left-
to-right sequence as specified.

Command outputs to current device the hexadecimal dump of specified
expression value. It is 3 columns: 1) segment number (counts from 0000), 2)
hexadecimal byte codes and 3) printable byte’s representation. If byte is not
printable, it represented with dot.

USER>zzdump $c(0,1,2,3,4,35,36,37,38,46,

47,48,78,79,80)

0000: 00 01 02 03 04 23 24 25 26 2E 2F

30 4E 4F 50#$%&./0NOP

If specified several expression comma delimited, command evaluates and
dump specified expresions in left-to-right order.

TEMP>zzdump 123,456

0000: 31 32 33 123

0000: 34 35 36 456

USER>s a=1,b=3

USER>zzdump @"a,b"

0000: 31 1

0000: 33 3

If argument evaluates as an empty string, the zzdump command does
nothing.

Chapter 5

Standard Functions

5.1 $ASCII

Return decimal value of specified ASCII symbol.

Syntax

$A[SCII](String{,Position})

Definition

String Any string expression.
Position Integer expression, position of symbol in String.

The $ASCII function return integer value as decimal code of ASCII sym-
bol within specified string and position. Decimal value counts as an ASCII
code of symbol of String in position Position. If Position argument does not
specified, it is used as 1. Function return result as -1 for an empty string, or
if Position is less then 1 or outside the String range.

Examples:

Command Function result
S X="ABCDE" $A(X)=65

$A(X,1)=65
$A(X,2)=66
$A(X,3)=67

S Y="4" $A(X,Y)=68
S X="" $A(X)=-1

$A(X,n)=-1 with any n.

135

136 CHAPTER 5. STANDARD FUNCTIONS

S X="AB" $A(X,0)=-1
$A(X,3)=-1
$A(X,-7)=-1
$A(X,1.92)=65 used integer expression part.

5.2 $BIT

Return bit value (0 or 1) from specified bitstring in specified position.

Syntax

$BIT(bitstring,position)

Definition

bitstring Bitstring created by $bit functions.
position Integer expression, bit position.

Function $bit() return bit value from bitstring in specified position. If
this string have not bitstring format, function generates an error <INVALID
BIT STRING>. If value of position expression is outside of possible range,
function generates an error <RANGE>. Range allowable is from 1 to 262104
inclusively.

If instead bitstring is used empty string or vvariable with undefined value,
function always return 0 value. If position is outside of available bits in
bitstring, function return 0 value.

Examples:

USER>s $bit(a,3)=1,$bit(a,6)=1

USER>f i=1:1:10 w $bit(a,i)

0010010000

5.3 $BITCOUNT

Returns count of available bits in bitstring.

Syntax

$BITCOUNT(bitstring[,bitvalue])

Definition

5.4. $BITFIND 137

bitstring Bitstring in $bitXXX functions format.
bitvalue Bits value to count (0 or 1).

Function $bitcount() with one argument return total bits count available
in bitstring, and with two argument returns count of specified bits (0 or 1). In
two-argument form the bitvalue expression evaluates as integer and compared
with 0. If it is 0, function calculate total count of 0 bits, otherwise calculate
total count of 1 bits.

If instead of bitstring was specified variable with undefined value or ex-
pression with empty string value, function returns 0.

If the value of bitstring has invalid bitstring format, function generates
an error <INVALID BIT STRING>.

Examples:

USER>s $bit(a,3)=1,$bit(a,12)=1

USER>w $bitcount(a)

12

USER>w $bitcount(a,1)

2

USER>w $bitcount(a,0)

10

USER>w $bitcount(aaaaa)

0

USER>w $bitcount(123)

<INVALID BIT STRING>

5.4 $BITFIND

Return position of bit with specified value.

Syntax

$BITFIND(bitstring,bitvalue[,position[,direction]])

Definition

bitstring Bitstring to find bit in.
bitvalue Bit value to find in bitstring.
position If specified, is a start bit position to find from.
direction If specified, is a find direction - forward or backward.

138 CHAPTER 5. STANDARD FUNCTIONS

Function $bitfind() returns position of specified bit in bitstring. If next
bit position not found, function returns value 0.

If the bitstring is an undefined variable or expression with an empty string,
function return value 0.

If value of bitstring has illegal format, function generates an error <INVALID
BIT STRING>.

The bitvalue expression evaluates as an integer and compares with 0. If
it is 0, function search next bit with 0 value, otherwise search next bit with
1 value.

Function counts bits position from 1, and starting bit position is 1.

If argument position is specified, search begins from this position. If
specified position less than 1, search begins from first position. If argument
position is not specified (2-argument form), search begins from first position.

If argument direction is specified, this expression evaluates as an integer
and compares with 1 and -1. If it is 1, search starts forward, id -1, search
starts backward, otherwise function generate an error <FUNCTION>. If
value of direction is not specified (2- or 3-argument forms), search starts
forward.

Examples:

USER>s $bit(a,3)=1,$bit(a,5)=1

USER>s i=0 f s i=$bitfind(a,1,i+1) q:’i w i,!

3

5

USER>s i=0 f s i=$bitfind(a,0,i+1) q:’i w i,!

1

2

4

Here code creates bitstring with bit 1 in positions 3 and 5, and display 0
and 1 bits positions is available in bitstring.

5.5 $BITLOGIC

Evaluates bitwise operation AND, OR, NOT over bitstrings and returns re-
sult as new bitstring.

5.5. $BITLOGIC 139

Syntax

$BITLOGIC(bitexpression)

Definition

bitexpression Logical bitwise expression over bitstrings with AND, OR
and NOT operations.

Function $bitlogic() evaluates bitwise AND, OR and NOT operations over
bitstring. Syntax rules for the bitexpression are:

bitexpression = bitatom [bittail]

bitatom = | glvn |

| (bitexpression) |

| ~bitatom |

bittail = bitoper bitatom

bitoper = | & |

| | |

Here glvn is a local or global variable name.

Expression - argument of function $bitlogic() evaluates in left-to-right
order if order does not specified by parenthesis. Math priorities of operations
from boolean algebra does not applied.

Operator NOT () is defined as unary operator and applied to right
operand. Operators AND (&) and OR (—) are defined as binary operators
and applies to left and right operands.

Instead bitstrings van be used local or global variable names or empty
strings, and for empty strings bitstrings counts as bitstrings from zero only
bits. The NOT operation result has the same bits count as present in ar-
gument. And AND and OR operation result has a maximum bit count of
left and right operands. If one of operands of binary operators is shorter, it
logically appends by zero bits to fit need length.

If one of logical operands has illegal bitstring format, function generates
an error <INVALID BIT STRING>.

Examples:

140 CHAPTER 5. STANDARD FUNCTIONS

USER>s $bit(a,1)=1,$bit(a,3)=1,$bit(a,5)=1

USER>s $bit(b,2)=1,$bit(b,3)=1,$bit(b,4)=1

USER>s c=$bitlogic(~a)

USER>f i=1:1:$bitcount(c) w $bit(c,i)

01010

USER>s c=$bitlogic(a&b)

USER>f i=1:1:$bitcount(c) w $bit(c,i)

00100

USER>s c=$bitlogic(a|b)

USER>f i=1:1:$bitcount(c) w $bit(c,i)

11111

5.6 $CHAR

Function return a string of symbols with specified decimal ASCII codes.

Syntax

$C[HAR](Integer{,...})

Definition

Integer Expression to count as a decimal ASCII code.

Function $CHAR return a string of symbols with specified ASCII codes
and with length of non-negative arguments count. If value of Integer is less
than 0 or greater than 255, function skip this position or make an empty
string. Maximum arguments count supported is 255.

Examples:

Command Function result

5.7. $DATA 141

S X=65,Y=66,Z="GOB" $C(X)=”A”
$C(Y)=”B”
$C(X,Y)=”AB”
$C(X,Y,67)=”ABC”
$C(X,-1,Y)=”AB”
$C(-1)=”” (empty string)
$C(65.7)=”A” (Used integer part of expres-
sion)
$C($A(Z,1),$A(Z,2),$A(Z,3))=”GOB”

5.7 $DATA

Returns indicator contain variable value and defined subscripts or not.

Syntax

$D[ATA](lvn[,glvn])

$D[ATA](gvn[,glvn])

$D[ATA](ssvn[,glvn])

Definition

lvn, gvn, ssvn,
glvn

Local, global or structured system variable need to check
have data.

Function $DATA() return indicator as an integer. Function can return of
the following values:

0 Variable have no data and subscripts.
1 Variable have data but no subscripts.
10 Variable have no data but have subscripts.
11 Variable have data and subscripts.

TEMP>k s a="",b(1)="",c="",c(1)=""

TEMP>w

a=""

b(1)=""

c=""

c(1)=""

142 CHAPTER 5. STANDARD FUNCTIONS

TEMP>w $d(z),!,$d(a),!,$d(b),!,$d(c)

0

1

10

11

Global variable name can be specified as name, name with subscripts, full
name with extending syntax with database name and using naked indicator.

Function $data() with global variable name always have a side effect -
naked indicator is changed even if this global name does not have any data
and subscripts defined.

TEMP>k ^a,^b

TEMP>s ^a=1

TEMP>w $d(^a),!,$zr,!,$d(^b),!,$zr

1

^a

0

^b

Function $data() with structured system variable return information about
existence of this subscript and possibility and result is dependent of this ssvn
type.

Function $data() with ˆ$LOCK check existence of specified in first sub-
script lock. This lock can be made by this process as such as other process.

TEMP>l w $d(^$L("a(1)")),! l a(1) w $d(^$L("a(1)"))

0

1

Function $data() with ˆ$JOB check existence of specified in first subscript
job number.

TEMP>w $d(^$J(123)),!,$d(^$J($j))

0

1

5.8. $EXTRACT 143

Function $data() with ˆ$ROUTINE check existence of specified in first
subscript routine’s source code.

Function $data() with ˆ$GLOBAL check existence of specified in first
subscript global name. Global exists if any subscript of global or unsub-
scripted name have data.

TEMP>w $d(^a)

1

TEMP>w $d(^$G("^a"))

1

Function $data() with ˆ$DEVICE check opened or not device specified
in first subscript. All devices in MiniM Database Server are process-private
only and ˆ$DEVICE return information only about devices which are opened
by current process.

TEMP>w $d(^$D($io)),!,$d(^$D("fgbfdb gfbfdb fgb"))

1

0

If two-argument form of the $data() function is used, second argument
must be the local or global variable name, and in the case of specified in the
first argument variable has the value, this value is assigned to the variable
glvn.

5.8 $EXTRACT

Return substring of string.

Syntax

$E[XTRACT](String[,Start[,End]])

Definition

String Source string to extract from.
Start Position to extract from.
End Position to extract to.

Function $extract() return substring of String from Start position to End

144 CHAPTER 5. STANDARD FUNCTIONS

position inclusively.

If source String is an empty string, function always return empty string.
If Start position does not specified, it supposed 1 (string begin). If End does
not specified, it supposed equal Start position and function return only one
symbol. If Start position is greater than String length, function return an
empty string. If Start position is less than 1, function return result from
String begin. If End is greater than String length, function return substring
up to end of String. And, if End is less than Start, function always return
an empty string.

Examples:

>w $e("abcd")

a

>w $e("abcd",3)

c

>w $e("abcd",3,6)

cd

5.9 $FIND

Function search substring in string and return position of next symbol after
found substring entry.

Syntax

$F[IND](String,Substring[,Start])

Definition

String Expression evaluated as a string to search Substring en-
try.

Substring Expression evaluated as a string to search in String.
Start Optional integer expression, position to start search Sub-

string in String. If omitted, function search from begin
of String.

Function $find() search Substring in String and return position after found
entry of Substring.

TEMP>w $f("123456789",23)

4

5.10. $FNUMBER 145

If function does not found Substring in String, it return 0.

TEMP>w $f("123456","789")

0

Optional argument Start specify position to start search from this posi-
tion.

TEMP>w $f("123123","3",2)

4

TEMP>w $f("123123","3",4)

7

So, function $find() can return position which does not belong any symbol
inside String.

If value of String evaluates as an empty string, function always return an
empty string and does not use any other arguments, but arguments evaluates
in left-to-right order.

TEMP>w $f("",123)

0

If value of Substring evaluates as an empty string, function always return
the Start position.

TEMP>w $f("123","")

1

TEMP>w $f("123","",456)

456

5.10 $FNUMBER

Return formatted numeric value.

Syntax

$FN[UMBER](Number,Format{,Fraction})

Definition

Number Expression evaluates as a number to format.
Format Formatting specification.
Fraction Number of digits after decimal point, optional.

146 CHAPTER 5. STANDARD FUNCTIONS

Function $FNUMBER formats numeric value using Format specification
and optional specification digits after decimal point.

Format specification for $FNUMBER function

Code Function result
+ (plus) Adds plus symbol if Number has positive

value.
- (minus) Suppress leading minus sign for negative

Number.
, (comma) Insert comma symbol each 3 digits left of dec-

imal point to separate thousands except lead-
ing symbol.

. (dot) Insert dot symbol each 3 digits left of decimal
point to separate thousands except leading
symbol and uses comma instead of decimal
point.

T or t Formats Number with plus or munus sign af-
ter Number or add one more space if minus
suppressed by ”-” format specifier.

P or p Formats negative Number in parenthesis or
positive Number between spaces.

Format specification symbols can be used in any order. If one or more
specifiers present more than once, second entry is ignored. If Format expres-
sion evaluates as an empty string, function returns source value of Number.
If Format contains both ”P” and ”T” or both ”+” and ”-”, function generate
an error.

The Fraction argument evaluates as an integer and used as a fractional
digits count to format Number. Function $FNUMBER formats Number with
rounding and add if need trailing zeroes.

Examples:

Command Function result

5.11. $GET 147

SET X=3.14159 $FNUMBER(X,"+")="+3.14159"

$FN(X,"+T")="3.14159+"

$FN(X,"+T",4)="3.1416+"

$FN(X,"T",4)="3.1416 "

$FN(X,"P",6)=" 3.141590 "

$FN(X,"P",5)=" 3.14159 "

$FN(X,"P",4)=" 3.1416 "

$FN(X,"P",3)=" 3.142 "

$FN(X,"P",2)=" 3.14 "

$FN(X,"P",1)=" 3.1 "

$FN(X,"P",0)=" 3 "

S X=1234567 $FN(X,",",2)="1,234,567.00"

S X=-15.406 $FN(X,"T")="15.406-"

$FN(X,"T",2)="15.41-"

$FN(X,"P")="(15.406)"

$FN(X,"PT-") error <FUNCTION>

5.11 $GET

Return value of specified variable if it exists.

Syntax

$G[ET](name[,default])

Definition

name Local, global or structured system variable to read if
have data.

default Expression to evaluate and return id variable have not
data. By default counts as an empty string.

Function $get() with local or global variable return value of specified
variable name if this name have data. Otherwise function return value of
default expression.

TEMP>k w $g(a,"a"),!,$g(a(1),"1")

a

1

Function $get() have a side effect - if function call global variable, it
changes a naked indicator value.

148 CHAPTER 5. STANDARD FUNCTIONS

TEMP>k ^a w $g(^a,"a"),!,$zr,!,$g(^a(1),"a1"),!,$zr

a

^a

a1

^a(1)

Function $get() with structured system variable have result depended of
this variable meaning. For example, ˆ$LOCK variable return locking owner
and locking count.

TEMP>w $g(^$J($j))

<SSVN VALUE>

TEMP>w $g(^$D($io))

<SSVN VALUE>

TEMP>l a(1) w $g(^$L("a(1)"))

1520:1

5.12 $JUSTIFY

Return string right-aligned with specified width and decimals.

Syntax

$J[USTIFY](String,Width[,Decimals])

Definition

String String to format.
Width Width to align.
Decimals Decimal digits after decimal dot.

Function $justify formats value of String right-aligned within the specified
Width and add spaces left as need. If argument Decimals is specified, value
of String formats as number with specified number of digits after decimal
point and round as need.

If argument Decimals is not specified, function does not round value of
String. To round value of String to integer without fractional value of Deci-
mals need to be 0.

5.13. $INCREMENT 149

If value of Decimals is less than 0, function rounds value of String to
integer.

If Width is less than String length, function return value of String without
truncation. If Decimals specify result string need to be longer than String
length, funciton does not truncate result.

Examples:

>w $j("12.27qwer",12)

12.24qwer

>w $j("12.27qwer",12,1)

12.3

>w $j(-"12.27qwer",4,8)

-12.27000000

5.13 $INCREMENT

Increments value of specified local or global variable atomic and return result.

Syntax

$INCREMENT(name)

$INCREMENT(name,add)

Definition

name Local or global variable name to increment.
add If specified, used as an increment value to add. By de-

fault is 1.

Function $increment() evaluates value of specified name as a number,
adds value of add expression (1 by default), save and return result.

If name variable has not data, function counts it as a zero.

If name variable has nonnumeric data, function counts it as a zero.

If name variable is a global variable, function perform unrollable by troll-
back command changes.

Instead of add expression can be used any expression, and function evalu-
ates it as a number. Result can be integer or fractional, positive or negative.

The trollback command rolls back current transaction by journal in back
order. And, if the same variable has been changed by set command first and

150 CHAPTER 5. STANDARD FUNCTIONS

by $increment() function next, trollback command does not use $increment()
changes made, but rolls back changes mede by set command.

Examples:

USER>k ^a s ^a=123 ts s ^a=^a+1 w ^a,! tro w ^a,!

124

123

USER>k ^a s ^a=123 ts w $i(^a),! tro w ^a,!

124

124

USER>k ^a s ^a=123 ts s ^a=456 w $i(^a),! tro w ^a,!

457

123

Function $increment() executes atomic, does not lock name used and
ignore any lock made by other processes.

Function $increment() does not included into current MUMPS Standard.

5.14 $LENGTH

Return string length or count of entries of substring.

Syntax

$L[ENGTH](String[,Substring])

Definition

String Expression evaluated as string to count.
Substring Expression evaluated as string to specify substrings in

String.

Function $length() returns number of symbols in String id optional argu-
ment Substring does not specified. If argument Substring is specified, function
counts number of entries of Substring in the String and returns result plus
one. If value of String is empty string, function always return 0.

Examples:

5.15. $LIST 151

Command Function result
SET X="ABC" $LENGTH(X)=3

S X="123456789" $L(X)=9

S X="" $L(X)=0

S X="AAAA" $L(X,"AA")=3

S X="ABCDBCABCABCD" $L(X,"AB")=4

$L(X,"DC")=1

$L(X,"ABCD")=3

$L(X,"")=0

5.15 $LIST

Return value of list element or sublist of list.

Syntax

$LIST(list[,pos[,end]])

$LI(list[,pos[,end]])

Definition

list Expression with $listbuild() list format.
pos Position of list element or sublist.
end Position of last sublist element.

Function $list() return element of list in specified position or sublist of
list.

If pos and end arguments does not specified, function return first element
of list.

If pos argument is specified but end does not, function return list element
from specified position. If value of pos evaluates as -1 integer, function return
value of last list element. If value of pos evaluates as 0 or 1, function return
value of first list element. If value of pos evaluates as an integer less than
-1, function generates an error <RANGE>, it is range violation. Otherwise
function return value of list element at pos position.

If value of list contain list element but this element have no data, function
generate an error <NULL VALUE>. If specified position does not contain
any list element (position outside of list), function generate an error <NULL
VALUE>.

152 CHAPTER 5. STANDARD FUNCTIONS

If function detect that value of list have invalif list format, function gen-
erate an error <LIST>.

Examples:

TEMP>s list=$lb("a","b","c")

TEMP>w $li(list,-1)

c

TEMP>w $li(list,-2)

<RANGE>

TEMP>w $li(list,1)

a

TEMP>w $li(list,2)

b

TEMP>w $li(list,3)

c

TEMP>w $li(list,4)

<NULL VALUE>

TEMP>w $li(123456,3)

<LIST>

If specified both pos and end arguments, function return not list element,
but sublist with list structure. New sublist is part of list from pos to end
positions.

If pos or end evaliates as negative integers, function $list() generates an
error <RANGE>.

If value of end evaluates less than or equal pos, function return list with
one only element.

If pos or end arguments are positions outside of real list elements, function
list does not add empty list elements, and result does not contain data what
is absent in the source list.

Examples:

TEMP>s list=$lb("a","b","c")

TEMP>w $li(list,1,2)

5.16. $LISTBUILD 153

??a??b

TEMP>w $li(list,2,2)

??b

TEMP>w $li(list,2,3)

??b??c

TEMP>w $li(list,2,8)

??b??c

Here symbols ? emphasize nonprintable symbols.

Function $list() use an empty string as a valid list structure with no
any list elements. 1- and 2- argument forms of $list() always generate an
error <NULL VALUE> and 3-argument form of $list() always return empty
string.

Function $list() and internals of structures does not included into current
MUMPS Standard.

5.16 $LISTBUILD

Return string encoded as list of specified elements.

Syntax

$LISTBUILD([item[,item...]])

$LB([item[,item...]])

Definition

item List element in appropriate position.

Function $listbuild() return string encoded as special structure, as list of
arguments values. Each function argument is a list element in this position
and follows in arguments order.

Result of $listbuild() function and this list structure is used by other
$listXXX functions.

Arguments can be omitted in any position. If argument omitted this list
element in result is present bu contain no data. For example, $listbuild()
function without arguments return list with one element and without data.

For group of functions $listXXX an empty string is a valid list structure
with no any elements.

154 CHAPTER 5. STANDARD FUNCTIONS

If $listbuild() function argument is a local or global variable with no data
(undefined value), function make this element too without data.

If list element is present but contain no data, function $list() for this list
position generate error <NULL VALUE>, and function $listdata() return
default value.

Any argument of $listbuild() function can be result of $listbuild() function
too. This will be list with element as list.

Result of $listbuild() encoding have format which allow concatenate two
lists to get new list with element of first and following second list elements.

Examples:

TEMP>s list=$lb("a",a,)

TEMP>w $li(list,1)

a

TEMP>w $li(list,2)

<NULL VALUE>

TEMP>w $li(list,3)

<NULL VALUE>

TEMP>w $li(list,4)

<NULL VALUE>

Here first list element is defined, second is undefined because used unde-
fined variable, third is undefined because is omitted, and fourth is undefined
becouse does not exists.

Internal list encoding have not canonic encoding format and lists can-
not be compared by comparision operator, it is need to use special function
$listsame().

Examples:

TEMP>s list1=$lb(123),list2=$lb("123")

TEMP>w list1=list2

0

TEMP>w $ls(list1,list2)

1

5.17. $LISTDATA 155

Lists encoding format use much shorter numbers encoding if possible and
differs from string representation of the same value.

Function $listbuild() and internals of list structures does not included into
current MUMPS Standard.

5.17 $LISTDATA

Return indicator is defined list element or not.

Syntax

$LISTDATA(list,[pos])

$LD(list,[pos])

Definition

list Expression with list structure.
pos Position of element to check.

Function $listdata() check and return information about contain data
specified list element or not. If pos argument is present, this expression
evaluates as integer and used as position number. If value of list expression
is not valid list structure, function generate an error <LIST>. If value of
pos is less than -1, function generates an error <RANGE>. If value of pos
is equal -1, function check data for last available list element. For position
0 or over available list positions function always return value 0. Otherwise
function return 0 if list element have no data or 1 if have.

If argument pos does not specified, function check defined or not first list
element.

Note, function does not check list element existence, function check have
list element data or not.

Examples:

TEMP>s list=$lb("a",a,)

TEMP>w $ld(list,-3)

<RANGE>

TEMP>w $ld(list,-1)

156 CHAPTER 5. STANDARD FUNCTIONS

0

TEMP>w $ld(list,0)

0

TEMP>w $ld(list,1)

1

TEMP>w $ld(list,2)

0

TEMP>w $ld(list,3)

0

TEMP>w $ld(list,4)

0

Here are different cases to check list element have data or not. If position
is less than -1, function generate an error <RANGE>, for 0 position list
element have no data, in position 1 data exists, in position 2 element have
no data because was used undefined variable to build list, 3 element have no
data because $listbuild() element was omitted, and 4 position is absent.

Function $listdata() and internals of list structures does not included into
current MUMPS Standard.

5.18 $LISTFIND

Function search data in list.

Syntax

$LISTFIND(list,value[,startafter])

$LF(list,value[,startafter])

Definition

list Expression with list value.
value Search value to find as list element.
startafter Position to start search.

Function $listfind() search in list elements entry with specified value.

If function find list element with specified value, funciton return list po-
sition of this element, and position counts from 1. If not found any element,
function return value 0. If list contains other lists as elements, function does
not search recursively. For each list element function use the ”equals” oper-

5.18. $LISTFIND 157

ator to compare values, and logically equal lists can be not found, because
list structure has not canonical data represendation. For example:

TEMP>w $lf($lb($lb("1")),$lb(1))

0

Here value does not found because internal in-byte representation of $lb(1)
and $lb(”1”) are different.

Optional third argument specify start position to search list element after
this position and this position does not used to search. Argument startafter
evaluates as an integer and if value is less than or equal 0, function search
from first list element.

If startafter argument specifies list position after last available, function
return value 0.

Example how value can be found in list:

TEMP>s list=$lb("a","b","c","a","d")

TEMP>s p=0 f s p=$lf(list,"a",p) q:p=0 w p,!

1

4

TEMP>

Here we create list where value ”a” is present in 1 and 4 position. Variable
p used as list position to find element after this. Code use cycle which ends
if function $listfind() returns value 0. And code write out found positions.

If function $listfind() detect list structure is corrupted, function generate
an error <LIST>. For example:

TEMP>w $lf(123,123)

<LIST>

Function $listfind() cannot find in list element with undefined value any
data including empty string.

Function $listfind() and internals of list structures does not included into
current MUMPS Standard.

158 CHAPTER 5. STANDARD FUNCTIONS

5.19 $LISTFROMSTRING

Function creates list from the delimited string.

Syntax

$LISTFROMSTRING(string[,delim])

$LFS(string[,delim])

Definition

string Source string with delimiters, which items need to be
used as list items.

delim Delimiter for resulting string. If this argument is omit-
ted, function uses a comma as a default string delimiter.

Function $listfromstring() uses source delimited string and creates a list
with the same items.

If result exceeds limit for one string in bytes, funcion generates an error
¡MAXSTRING¿.

Examples:

USER>s str="11,22,33"

USER>s list=$lfs(str)

USER>f i=1:1:$ll(list) w $li(list,i),!

11

22

33

USER>s str="11~22~33"

USER>s list=$lfs(str,"~")

USER>f i=1:1:$ll(list) w $li(list,i),!

11

22

33

Developers need to know that, unlike function $listfromstring() is a pair
function to the $listtostring(), the result of sequencial appliyng of functions

5.20. $LISTGET 159

$listtostring() + $listfromstring() may differ from the source list, becouse list
internal structure does not have canonical representation. So, ff developers
need to compare list structures, there must not be used binary comparision,
and must be used special logical comparision function $listsame().

Example:

USER>s list1=$lb(11,22,33)

USER>s str=$lts(list1)

USER>s list2=$lfs(str)

USER>w list1=list2

0

USER>w $listsame(list1,list2)

1

Function $listfromstring() and internals of list structures does not in-
cluded into current MUMPS Standard.

5.20 $LISTGET

Return list element or default value.

Syntax

$LISTGET(list[,pos[,default]])

$LG(list[,pos[,default]])

Definition

list Expression with list value.
pos List element position.
default Default value.

Function $listget() return list element value if this element have data or
default value if list element have undefined value.

Value of list expression need to be valid list structure, created by $list-
build() function.

If argument pos is omitted, function return value of first list element, from

160 CHAPTER 5. STANDARD FUNCTIONS

position 1.

If value of pos is less than -1, function generate an error <RANGE>.

If value of pos evaluates as -1, function return value of last available list
element.

If value of pos evaluates as 0 or specify position outside of really present
list elements, function return default value.

If argument default is omitted, function use an empty string as default
value.

If function detect that value of list is not valid list structure, function
generate an error <LIST>.

Examples:

TEMP>s list=$lb("a","b","c")

TEMP>w $lg(list,-3,"def")

<RANGE>

TEMP>w $lg(list,-1,"def")

c

TEMP>w $lg(list,0,"def")

def

TEMP>w $lg(list,1,"def")

a

TEMP>w $lg(list,2,"def")

b

TEMP>w $lg(list,3,"def")

c

TEMP>w $lg(list,4,"def")

def

TEMP>w $lg(123,4,"def")

<LIST>

Function $listget() and internals of list structures does not included into
current MUMPS Standard.

5.21. $LISTLENGTH 161

5.21 $LISTLENGTH

Function return count of available list elements.

Syntax

$LISTLENGTH(list)

$LL(list)

Definition

list Expression with list value.

Function $listlength() return count of available list elements of list. Value
of list must have list structure created by $listbuild() function.

If function detect that list have not valid list structure, function geberate
an error <LIST>.

For list as an empty string function return value 0.

For other list structures function return count of available list element,
including elements with and without data.

If list element of list is a list structure too, function count this element as
one element and does not parse internal structure.

Examples:

TEMP>w $ll("")

0

TEMP>w $ll("1")

<LIST>

TEMP>w $ll($lb("1"))

1

TEMP>w $ll($lb("1",,))

3

Function $listlength() and internals of list structures does not included
into current MUMPS Standard.

162 CHAPTER 5. STANDARD FUNCTIONS

5.22 $LISTSAME

Compares two lists and return equal lists or not.

Syntax

$LISTSAME(list1,list2)

$LS(list1,list2)

Definition

list1,list2 Expression with list value.

Function $listsame() compares two lists and return 1 if lists are logically
equal (literally), otherwize return 0. List items with undefined values are
logically equal.

Empty strings function $listsame() count as an empty lists with 0 items
count.

Function compares list items sequentially in left-to-right order.

If function detects that list items are not equals, function stop scanning
and return 0.

If function $listsame() detect that one of list have invalid list structure,
function stop scanning and generate an error <LIST>.

If list element have list structure too, function $listsame() does not com-
pare elements as lists, and compares literally only.

Examples:

TEMP>w $ls("","")

1

TEMP>w $ls("","1")

0

TEMP>w $ls("1","")

0

TEMP>w $ls($lb(1),$lb("1"))

1

TEMP>w $lb(1)=$lb("1")

0

Function $listsame() and internals of list structures does not included
into current MUMPS Standard.

5.23. $LISTTOSTRING 163

5.23 $LISTTOSTRING

Function creates string with delimiters from the list.

Syntax

$LISTTOSTRING(list[,delim])

$LTS(list[,delim])

Definition

list Expression with source list value, need to be trans-
formed to the delimited string.

delim Delimiter for resulting string. If this argument is omit-
ted, function uses a comma as a default string delimiter.

Function $listtostring() creates delimited string from the list with delim-
iter secified in the second argument. Function does not parses embedded
strings as possible list structures and uses ones as is.

If source list value does not match list structure, function generates error
¡LIST¿.

If function detect that one or more list elements have an undefined value,
function generates error ¡NULL VALUE¿.

Examples:

USER>w $lts($lb())

<NULL VALUE>

USER>w $lts($lb("zero","first","second"))

zero,first,second

USER>w $lts($lb("zero","first","second"),"~")

zero~first~second

USER>w $lts("ordinal string","~")

<LIST>

Developers need to know that the function $listtostring() uses items of
the source list list as is, even if ones includes used delimiter, so number of
items of delimited string can differ from the number of list items.

Example:

164 CHAPTER 5. STANDARD FUNCTIONS

USER>w $lts($lb("a,b","c,d"))

a,b,c,d

Here has been used list of two items, each of one contains used delimiter
(comma) and result contains three delimiter.

Function $listtostring() and internals of list structures does not included
into current MUMPS Standard.

5.24 $LISTVALID

Function check that the argument evaluates as a possible list structure.

Syntax

$LISTVALID(expr)

$LV(expr)

Definition

expr Expression with possible list value, need to be checked.

Function $listvalid() check argument, is it correct list structure or not.
expr value can be created by the $listbuild() function or concatenation or
any other operation and can conform to the list structure or not.

If argument can be used as a correct list structure, function returns 1,
otherwise returns 0.

For expr as an empty string function return value 1.
If list element of expr is a list structure too, function count this element

as one correct element and does not parse it’s internal structure.

Examples:

USER>w $lv("string")

0

USER>w $lv($lb())

1

USER>w $lv($lb(1,2,3))

1

USER>w $lv(123)

0

USER>

5.25. $NAME 165

Function $listvalid() check entire value, so some ov possible strings may
be used in list operations, but does not be valid lists:

USER>s list=$lb(123,456,789)_"string"

USER>w $li(list,2)

456

USER>w $lv(list)

0

Function $listvalid() and internals of list structures does not included into
current MUMPS Standard.

5.25 $NAME

Return string with name of local, global or structured system variable.

Syntax

$NA[ME](glvn[,level])

Definition

glvn Local, global or structured system variable
name.

level Integer with subscript level.

Function $name() return canonical string respresentation of specified vari-
able name with all specified subscripts up to level subscripts.

Function $name() does not check variable existence and database exis-
tence for global variables. Global variables can be specified using naked indi-
cator, and all variables can be specidief using name and subscript indirection
syntax. Result of function $name() always have canonical representation.

If level argument is omitted, function creates name with all specified
subscripts.

If value of level evaluates as 0, function return variable name only, without
subscripts. If value of level evaluates less than 0, function generate an error
<FUNCTION>.

If value of level evaluates greater than really specified subscripts, function
return full name with all specified subscripts.

166 CHAPTER 5. STANDARD FUNCTIONS

Examples:

>s ^A(1,2,3)=1

>w $na(^A(1,2,3))

^A(1,2,3)

>w $na(^A(1,2,3),1)

^A(1)

>w $na(^(2,9,10))

^A(1,2,2,9,10)

TEMP>w $na(^A(1,2,3),2)

^A(1,2)

TEMP>w $na(^A(1,2,3),0)

^A

TEMP>w $na(^A(1,2,3),-1)

<FUNCTION>

Note: global variable ˆA(2,9,10) here does not defined.

5.26 $ORDER

Return next available variable subscript.

Syntax

$O[RDER](name[,direction])

Definition

name Local, global or structured system variable.
direction Optional, direction to enumerate next subscript.

Function $order() with local and global variable return next available
subscript with index sorting, and enumerate from last specified in name
subscript.

TEMP>s a(12)=12,a(45)=45,a("ab")="ab",a("cd")="cd"

TEMP>w $o(a(1))

12

TEMP>w $o(a(100))

5.26. $ORDER 167

ab

TEMP>w $o(a("bb"))

cd

TEMP>w $o(a("zz"),-1)

cd

TEMP>w $o(a("bb"),-1)

ab

TEMP>w $o(a("100"),-1)

45

TEMP>w $o(a("20"),-1)

12

If next subscript does not exist, function return empty string. If last
specified in name subscript is an empty string, function return last available
of first available subscript depending or specified direction.

TEMP>w $o(a(""),-1)

cd

TEMP>w $o(a(""))

12

Optional direction can be omitted, or evaluates to 1 or -1. Other values are
reserved by standard fo future use and now generates an error <FUNCTION>.
Values of direction can be one of the following:

1 Return next subscript forward.
-1 Return next subscript backward.
omitted Return next subscript forward.

If $order() function applied to global variable without subscripts, function
generates an error <FUNCTION>.

If $order() function applied to local variable without subscripts, function
return next available local variable name without subscript. This allow enu-
merate all available local variables by name. Note, name need to be correct
syntax variable name, but may not exist. For example:

TEMP>s a="a",b="b",c="c"

TEMP>s %="%" f s %=$o(@%) q:%="" w %,"=",@%,!

168 CHAPTER 5. STANDARD FUNCTIONS

a=a

b=b

c=c

TEMP>s %="zzz" f s %=$o(@%,-1) q:%="" w %,"=",@%,!

c=c

b=b

a=a

%=%

If function $order() applied to global variable, function have a side effect,
change naked indicator. If next subscript exists, function changes naked
indicator to this existing name, otherwise function changes naked indicator
to source specified name even this variable does not exist.

TEMP>k ^a w $o(^a("")),!,$zr

^a("")

TEMP>s ^a(1)=1 w $o(^a("")),!,$zr

1

^a(1)

TEMP>w $o(^a(1)),!,$zr

^a(1)

If argument name been specified as global name with database name,
naked indicator changes to contain full name with database name too.

TEMP>w $o(^|"TEMP"|a(1)),!,$zr

^|"TEMP"|a(1)

Function $order() with structured system variable depends of this variable
meaning.

$order(ˆ$LOCK(name)[,direction]) return available locks, created by any
process.

$order(ˆ$ROUTINE(name)[,direction]) return available routine names with
source code.

$order(ˆ$DEVICE(name)[,direction]) return device names opened by cur-
rent process.

5.27. $PIECE 169

$order(ˆ$GLOBAL(name)[,direction]) return global names in current database.

$order(ˆ$JOB(job)[,direction]) return available job’s numbers of current
MiniM Database Server instance.

5.27 $PIECE

Return substring selected by delimiter.

Syntax

$P[IECE](String,Delimiter[,Start[,End]])

Definition

String Expression with source string.
Delimiter Expression with delimiter.
Start Start piece position.
End End piece position.

Function select from source String substring, using specified Delimiter
(may be one or more characters). Supposed, source string consist of several
pieces, delimited by Delimiter and each this piece have position in left-to-right
order. Count of this pieces can be evaluated by $length(String,Delimiter)
function.

Start optional argument defines first piece position need to be selected
and End optional argument defines last piece position need to select. If End
argument is specified, function return pieces delimited by Delimiter.

If source String evaluates as an empty string, function always return an
empty string. If Delimiter evaluates as an empty string, function always
return empty string.

If Start argument does not specified, function return first available piece
(meaning by default).

If End argument is not specified, it supposed equal to Start and function
return only one piece.

If Start evaluates as a position greater than available piece positions in
String, function return an empty string. If Start evaluates as a number less
than 1, function suppose it equal 1 and return pieces from first available
position.

170 CHAPTER 5. STANDARD FUNCTIONS

If End evaluates as a number greater than available piece position in
String, function return only available pieces without padding from specified
Start position. And, if End evaluates less than Start argument, function
return an empry string.

If String expression value starts with Delimiter, function suppose that first
piece is an empty string. And, if String terminates by Delimiter, function
suppose last piece exist and is an empty string too.

Examples:

>w $piece("a^b^c","^")

a

>w $p("a^b^c","^",2)

b

>w $p("a^b^c","^",2,3)

b^c

5.28 $QLENGTH

Return subscripts count of variable name.

Syntax

$QL[ENGTH](name)

Definition

name Expression with local, global or structured system vari-
able name.

Function $qlength() return subscripts count of variable name. If variable
name have not subscripts, function return value 0.

Examples:

TEMP>w $ql("a")

0

TEMP>w $ql("a(1)")

1

TEMP>w $ql("a(1,1)")

2

TEMP>w $ql("a(1,1,1)")

3

5.29. $QSUBSCRIPT 171

Global variable name can be specified with and without database name,
this does not affect to $qlength() retrun.

TEMP>w $ql("^a(1,1,1,1)")

4

TEMP>w $ql("^|""abc""|a(1,1,1,1)")

4

Database name can be specified inside vertical braces and inside square
brackets.

TEMP>w $ql("^|""123""|a(1,1,1)")

<FUNCTION>

TEMP>w $ql("^|abc|a(1,1,1)")

<FUNCTION>

For structured system variable real variable existence does not checked
to exists.

TEMP>w $ql("^$lll(1,1,1,1)")

4

TEMP>w $ql("^$abcd(1,1,1,1)")

4

For local and global variables real variable existence does not checked,
function does not call this variable data or locks and operate only by name.
If name contains more than maximum allowed subscripts (63), function gen-
erate an error <FUNCTION>.

5.29 $QSUBSCRIPT

Return specified name part, name database name or subscript value.

Syntax

$QS[UBSCRIPT](namevalue,position)

Definition

172 CHAPTER 5. STANDARD FUNCTIONS

namevalue Expression with variable name.
position Number or name part to return.

Function $qsubscript() return part of variable name, name, database
name, subscript value from specified in namevalue full variable name. Real
variable does not checked to exists, locked or contain data. Argument posi-
tion specify real name part to return and can be one of the following:

< -1 Function generate an error <FUNCTION>, this values
are reserved by standard for future use.

-1 Function return database name if namevalue is a global
name. otherwise return an empty string.

0 Function return unsubscripted variable name.
<= n If position from 1 to n where n is a subscripts count,

function return subscript value.
> n If position is greater than subscripts count, function re-

turn an empty string.

Examples:

TEMP>w $qs("^|""abc""|aaa(1,2,3)",-2)

<FUNCTION>

TEMP>w $qs("^|""abc""|aaa(1,2,3)",-1)

abc

TEMP>w $qs("^|""abc""|aaa(1,2,3)",0)

^aaa

TEMP>w $qs("^|""abc""|aaa(1,2,3)",1)

1

TEMP>w $qs("^|""abc""|aaa(1,2,3)",2)

2

TEMP>w $qs("^|""abc""|aaa(1,2,3)",3)

3

TEMP>w $qs("^|""abc""|aaa(1,2,3)",4)

TEMP>w $qs("^$aaa",0)

^$aaa

For global variable names database name can be specified using vertical
braces (||) and square brackets ([]).

5.30. $QUERY 173

For structured system variable name does not checked is name exist and
implemented or not.

If argument position specify more than supported subscripts count (max-
imum 63), function generate an error <FUNCTION>.

TEMP>w $qs("^[abc]aaa(1,2,3)",0)

<FUNCTION>

USER>w $qs("^[""abc""]aaa(1,2,3)",0)

^aaa

5.30 $QUERY

Return next available name with subscripts have data.

Syntax

$Q[UERY](name[,direction])

Definition

name Local, global, or structured system variable name with
or without subscripts.

direction Direction to find out next available name with data,
forward or backward.

Function $query() return next variable with the same name and have any
data defined in index order.

Examples:

TEMP>s ^a(1)=1,^a(2,2)=22,^a(3,3,3)=333

TEMP>zw ^a

^a(1)=1

^a(2,2)=22

^a(3,3,3)=333

TEMP>w $q(^a(1))

^a(2,2)

TEMP>w $q(^a(2))

^a(2,2)

174 CHAPTER 5. STANDARD FUNCTIONS

TEMP>w $q(^a(3))

^a(3,3,3)

TEMP>w $q(^a(5),-1)

^a(4)

TEMP>w $q(^a(4),-1)

^a(3,3,3)

TEMP>w $q(^a(3),-1)

^a(2,2)

TEMP>w $q(^a(2),-1)

^a(1)

Argument direction specify enumerating order - forward or backward.
Value of direction can be one of the following:

-1 Return next available name backward.
1 Return next available name forward.
omitted Return next available name forward.
other Function generate an error <FUNCTION>, values are

reserved by stabdard for future use.

If last subscript of name is an empty string, function return last of first
variable name depending of direction value.

TEMP>w $q(^a(""))

^a(1)

TEMP>w $q(^a(""),-1)

^a(4)

If next variable name does not exist, function $query() return an empty
string. Exmaples:

TEMP>w $q(^a(5))

TEMP>w $q(^a(1),-1)

TEMP>

If name contains a database name for a global variable, function $query()
return result with database name too. If database name specified as an empty
string, it is equal current database name.

5.31. $RANDOM 175

TEMP>w $q(^a(1))

^a(2,2)

TEMP>w $q(^|""|a(1))

^|""|a(2,2)

TEMP>w $q(^|"TEMP"|a(1))

^|"TEMP"|a(2,2)

Function $query() always check variable name contains data and return
only existing variable names (function $data() for this names return values
1 or 11).

Function $query() have a side effect and change naked indicator if name
is a global variable name. If next name exist, naked indicator chenges to this
name, otherwise naked indicator changes to source name even if this name
does not contain data.

Examples:

TEMP>w "next=",$q(^a(1)),!,"naked=",$zr

next=^a(2,2)

naked=^a(2,2)

TEMP>w "next=",$q(^a(5)),!,"naked=",$zr

next=

naked=^a(5)

5.31 $RANDOM

Return pseudorandom number in specified interval.

Syntax

$R[ANDOM](Integer)

Definition

Integer Expression with interval size to return pseudorandom
number from 0 to Integer.

Function $random() return pseudorandom integer number which equal or
greater than 0 and less than value of Integer. If value of Integer evaluates as
1, function always return 0. If value of Integer evaluates less then 1, function
generate an error <FUNCTION>.

176 CHAPTER 5. STANDARD FUNCTIONS

Examples:

Command Function result
SET X=$RANDOM(25) Value of X is from 0 to 24 inclusive.
SET X=$R(2) Value X may be 0 or 1.
SET X=$R(1) Value of X always is 0.
SET X=$R(-1) Error <FUNCTION>.

5.32 $REPLACE

Replaces substring in string and return result.

Syntax

$REPLACE(string,old,new[,start[,count[,case]]])

Definition

string Expression evaluated as string whithin need to replace substring
old Substring to replace from
new Substring to replace to
start Optional argument, position of symbol to search substring from.
count Optional argument, count of replaces need to do.
case Optional argument, specify case sensitivity to search old

Function $replace() return string based on the string with replacing en-
tries old to new with specified options.

If source string evaluates as an empty string, function does nothing and
return an empty string.

If value of old evaluates as an empty string, function does nothing and
return value of source string.

If value of new evaluates as an empty string, function returns value of
source string with removing old substrings using specified options.

If argument start is present, it is start position of symbol to start search
old in string. Any value evaluated as zero or negative number starts search
from string start. If value of start evaluates as an integer greater than string
length, function does nothing and return source string. If argument start
does not specified, function start search from first string symbol.

If argument count is specified, this expression evaluaates as an integer
and used as a count to search old entries. If it is evaluates as -1, this mean

5.33. $REVERSE 177

replace all available entries after start symbol. If value of count evaluates
as 0 or any other negative number, function does nothing and return source
string. If argument count is omitted, function replace all entries from start
symbol.

If argument case is specified, it is case-sensitivity option. If argument
is omitted or evaluates as zero, function use case sensitive search, otherwise
(specified and evaluates as nonzero) function search case insensitive. Note,
case sensitivity for current database instance is defined in national collation
file, file minim.ini, section Server, key Locale. To compare two symbols case
insensitive function shift to the same case both symbols.

Examples:

USER>w $replace("qqwweerr","w","AA")

qqAAAAeerr

USER>w $replace("qqwweerr","ww","AA")

qqAAeerr

USER>w $replace("qqwweerr","www","AA")

qqwweerr

USER>w $replace("qqwweerr","w","AA",3)

qqAAAAeerr

USER>w $replace("qqwweerr","w","AA",4)

qqwAAeerr

USER>w $replace("qqwweerr","w","AA",3,1)

qqAAweerr

USER>w $replace("qqwWeerr","w","AA",1,-1,0)

qqAAWeerr

USER>w $replace("qqwWeerr","w","AA",1,-1,1)

qqAAAAeerr

5.33 $REVERSE

Return symbols of string in reverse order.

Syntax

$RE[VERSE](String)

Definition

String Expression to reverse symbols order.

178 CHAPTER 5. STANDARD FUNCTIONS

Function $reverse() evaluates argument String as string and return string
with the same symbols in reverse order.

Examples:

Command Function result
SET X="ABCDEF" $REVERSE(X)="FEDCBA"

SET X="" $RE(X)=""

SET X=2*64 $RE(X)=821

5.34 $SELECT

Return value evaluated depending of series of conditions.

Syntax

$S[ELECT](Expr:Value[,Expr:Value[,...]])

Definition

Expr Expression evaluated as boolean condition.
Value Expression evaluated to return for true condition.

Function $select() evaluates arguments in left-to-right order as pairs of
Expr and Value and search first occurence when Expr evaluates as nonzero
number. Function stop scan arguments and return Value of this pair.

Number of pairs can be up to 255.

If function does not find any pait with true Expr, function generate an
error <SELECT>.

Note: To exclude error condition it is recommended to make at least last
case with true condition. For example:

$s(a<0:1,a>0:-1,1:0)

Examples:

>s a=-123

>w $s(a<0:1,a>0:-1,1:0)

-1

>s b=$s(a<0:"one^Rout",a>0:"two^Rout",1:"three^Rout")

>d @b

5.35. $STACK 179

5.35 $STACK

Return information about stack context of current process.

Syntax

$ST[ACK](Level[,Context])

Definition

Level Stack level number to examine.
Context Stack context.

Function $stack() return information about current process stack context.
Stack context number to examine is specified by Level argument and can be
from 0 (top stack level) to current level, which return system variable $stack
inclusively.

For 1-argument form $stack() function return string with error if was
error on this stack level or one of the following codes:

DO If this stack context has been created by do command
execution with or without argument.

XECUTE If this stack context was created by xecute command
execution.

$$ If this stack context was created by function call with
return context.

For 1-rgument form of $stack() function are reserved 2 special values:

-1 Returns maximum available stack levels for analisys.
0 Returns eecution context of zero level and process start

method

Prcess start method is comma-delimited with execution context and can
be the following:

XECUTE,CONSOLEProcess was run in console mode.
XECUTE,TELNETProcess was run for telnet connection.
XECUTE,STD Process was run with input-output redirection.
XECUTE,JOB Process was run as background job.

180 CHAPTER 5. STANDARD FUNCTIONS

XECUTE,JOBTCPProcess wa srun as background job with accepted
TCP/IP socket.

QUIT,MONO Expression evaluation in the MiniMono context.
XECUTE,MONO Command line execution in the MiniMono context.
XECUTE,UNKNOWNProcess in command line execution, but start method

was not detemined.

For 2-argument form $stack() function argument Context can be one of
the following:

PLACE Function return routine place executed.
MCODE Function return code line executed.
ECODE Function return string with error if was error.

If stack context created by xecute command, function return for Context
= ”PLACE” string with one symbol ”@”.

If executed line has no label, function return for Context = ”PLACE”
string with label + offset + routine name. Label and offset counts from last
passed label.

Function $stack() can be executed in any context. If argument Level
is less than -1, function generate an error <FUNCTION>. If argument
Level is greater than return of $STACK(-1) (maximum available stack frames
information), function returns an empty string.

The $STACK() function keeps information about stack frames if process
in error state until assignment

set $ecode=""

and next return real process’s stack information.

5.36 $TEXT

Return line of routine source code.

Syntax

$T[EXT]([Label][+Offset][ˆRoutine])
or

$T[EXT](@Expression)

Definition

5.36. $TEXT 181

Label Label name (subroutine name).
Offset Line offset relative label.
Routine Routine name.
Expression Expression evaluated as string and containing Label, Off-

set and Routine as need. It is $text() function indirec-
tion.

Function return string with line of source code of specified routine. If
source code is absent, function search line of code inside bytecode. Line of
code inserted by compiler if contain double comment (;;).

Line place specified by combination of Label, Offset and Routine and
return line with Offset relative Label inside Routine. And value of Offset
need to be positive integer. First function form requires at least one element
of Label, Offset or Routine. Second function form (Expression) must contain
correct first form.

Function $text() return line of code using currently available routine
source code. If source code is absent, function in common case return empty
string if this line does not contain double comment (;;).

If argument contain Routine only, function return first line of code for
this routine.

If argument contain Offset but does not contain Label, function counts
line of code from routine’s first line.

If Routine is specified, but Offset is equal 0, function return this routine
name.

If Offset does not specified, function return line with this Label.

If Routine does not specified, function suppose it is current routine. For
example, $text(+0) return currently executed routine.

If function cannot find line of code with specified arguments, function
return an empty string.

Routine can be specified using extended syntax, with database name.

Function return string without carriage return symbol.

Examples:

=TstRout - source routine text=======

a(num)

n a,b,c

182 CHAPTER 5. STANDARD FUNCTIONS

s a=1

s b=2

s c=3

w "current routine offset "num," line is ",$t(+num),!

w "current routine label offset ",num," line is ",$t(a+num),!

=========

>w $t(^TstRout)

a(num)

>w $t(+2^TstRout)

n a,b,c

>d a^TstRout(4)

current routine offset 4 line is s b=2

current routine label offset 4 line is s c=3

>s param="a+2^TstRout"

>w $t(@param)

s a=1

5.37 $TRANSLATE

Return string with symbols substitution.

Syntax

$TR[ANSLATE](String,Old[,New])

Definition

String Expression evaluated as a string to execute substitution.
Old Expression evaluated as a string with symbols substitute

from.
New Expression evaluated as a string with symbols substitute

to.

Function $translate() scan every symbol in String in left-to-right order
and substitute symbol if it present in Old string to symbol from New in
the same position. If symbol from Old have not appropriate symbol in New
string, this symbol replaced by empty string (removed). If New argument
does not specified, each symbol of Old is removed from String. If New string
have length greater than Old, odd symbols are ignored.

Examples:

5.38. $VIEW 183

Function Function result
$TR("ABCD","A","X") ”XBCD”, symbol A replaced to X
$TR("ABCD","AB","X") ”XCD”, Symbol A replaced to X and B to

empty string
$TR("ABCD","AB","ab") ”abCD”
$TR("12-34-56","-") ”123456”, removing symbol ”-”

5.38 $VIEW

5.38.1 $VIEW(”db”)

If first argument of $view() function evaluates as a ”db” string case insen-
sitive, this group of function create, delete, add to data files data blocks.
Direct functions can no check configuration file.

$view(”db”,1,filename,pageblocks)

Create new root data file with filename as file name and pageblocks blocks
number. One block of pages have size 1Mb.

$view(”db”,2,dbname[,pageblocks])

Add to database dbname specified number of page blocks pageblocks. If
number of pageblocks is not specified, function add 1 block of pages. One
block of pages have size 1Mb.

If database have growing limit, function does not exceed this limit. If this
database does not exist or not mounted, or read only, function generate an
error <FUNCTION>.

$view(”db”,3,filename,pageblocks)

Add to data file filename specified number of page blocks pageblocks. One
block of pages have size 1Mb.

$view(”db”,4,filename)

Return number of page blocks in specified data file.

$view(”db”,5,nspace,nblock)

Read and return value of page in this database.

$view(”db”,6,nspace,nblock,value)

Write value of page nblock in this database.

$view(”db”,7,nspace,nblock)

184 CHAPTER 5. STANDARD FUNCTIONS

Lock page nblock to read in this database.

$view(”db”,8,nspace,nblock)

Lock page nblock to write in this database.

$view(”db”,9,nspace,nblock)

Remobe read lock for nblock page in this database.

$view(”db”,10,nspace,nblock)

Remove write lock for nblock page in this database.

$view(”db”,11,nspace,nblock,locktype)

Convert lock for this nblock page to specified: 0 - to read, 1 - to write.

$view(”db”,12,nspace,blocktype)

Allocate new page with blocktype type.

$view(”db”,13,nspace,nblock)

Free nblock page from this database.

$view(”db”,14)

Remove all pages locks in this database.

$view(”db”,15)

Return list of mounted database with ”*” delimiter.

$view(”db”,15,dbname)

Return existence of database dbname: 1 if exist, 0 if not.

$view(”db”,16,options,filename)

Create backup all mounted databases into file filename with backup op-
tions options.

$view(”db”,16,options,filename,dblist)

reate backup all databases listed in dblist delimited by comma into file
filename with backup options options.

The options argument evaluates as a string and need to be a set of special
symbol flags:

F or f Make full backup, cannot be used with D flag
D or d Make differential backup, cannot be used with F flag
T or t Truncate journal after backup
R or r Show full backup report.

5.38. $VIEW 185

If flag T is not present, journal does not truncated.

If flags F and D does not specified, function make full backup.

The filename argument evaluates as a string and specify backup file name
to backup to. If intermediate directories does not exist, it is creates auto-
matically.

If function succedded ok, it return an empty string. Otherwise function
return error code, one of the following:

1 Failed to use bot F and D flags.
2 Specified unsupported beckup flag.
3 Backup file name is much long to use.
4 Backup file name is empty string.
5 Backup file name contains illegal symbols.
6 One of specified to backup database does not mounted.
7 One of specified to backup database is autocreted

database. Backup does not support autocreated
database.

8 One of specified database does not exist in current con-
figuration.

9 Function failed to find at least one database to backup.
10 Failed to create intermadiate directories.
11 Failed to open file name for writing to backup to.
12 Failed internal file compressor.
13 Failed to write one more page to backup.

If specified journal trancation option and now still work at least one pro-
cess in transaction state, journal truncation option is ignored, and function
$v(”db”,16) return empty string with following comma and current process
count in transaction state.

$view(”db”,17,filename)

Function return backup file header in the form:

Number , Text

If Number is not zero, it was an error and Text contain error text, other-
wise Text is comma delimited header fields in the following order:

String ”MiniM backup file”, show it is a MiniM backup file.

String ”FULL” of ”DIFF”, as beckup type - full or differential.

186 CHAPTER 5. STANDARD FUNCTIONS

Internal integer transaction sequence number.

Count of database backed up in this file.

Backup date in format dd.mm.yyyy.

$view(”db”,18,filename)

Function return backed up databases list comma delimited, If return start
with a number, it is an error code, comma, and following error text was while
access backup file.

$view(”db”,19,options,filename)

Restore databases from backup file.

Restore options options evaluates as a string and need to be a set of
special flags:

J or j Apply journal after restore from backup
S or s Don’t touch journal
F or f Check this backup file if full backup
D or d Check this backup file is differential backup
R or r Report what happens

Backup file name to restore from is specified in filename argument.

If database restore succeeded ok, function return an empty string. Oth-
erwise return error code:

1 Failed to use bot alternative restore options.
2 Specified unsupported restore option.
3 Specified illegal file name.
4 Failed to open backup file to read.
5 File is not MiniM backup file.
6 Failed to read from backup file.
7 CRC check failed.
8 File is not full backup file.
9 File is not differential backup file.
10 Still active processes in transaction state.
11 Database listed in backup file, does not exist on current

MiniM instance.
12 Database listed in backup file, does not mounted on cur-

rent MiniM instance.
13 Database listed in backup file is in readonly state.
14 Failed to access journal file.

5.38. $VIEW 187

15 Failed to find last journal file.
16 Failed to find restore point in journal.
17 Failed to read journal file.
18 Failed to write page to database.
19 Failed to write to journal file.
20 Failed to extend one or more database.

On the MiniM Database Server only one process can run database restore
function. While this function doing, server suspend execution of other pro-
cesses and creation of new processes. Server suppose that database restore
can be made only by one operator.

To restore database server requires suspend execution all other processes
and suspend creation new processes. This executes on the special restore
phase. After restore phase complete, suspended processes runs again and
server allow create new processes. However MiniM Database Server requires
that no any processes still in transaction state during restore.

If flag ”R” is specified, function writes out to current device detailed
messages what happens.

If flag ”J” is specified, function after restoring database blocks search in
journal special backup point and apply journaled after this point records to
database. Note, existing this journal records after beckup depends of databas
configuration.

If does not specified flag ”J” and ”S”, function execute pages restoring
and rolls back uncompleted transactions by journal to backup point. It is
recommended to restore databases to backup moment.

If flag ”S” is specified, functin skip journal handling phase and restore
pages only. It is recommended if need to restore from full and several differ-
entioal backup files to save database changes order.

Database restore operator who run database restore functions need to
understand beckup and restore functionality and rules to implement server
failover. This documents are detailed in the ”MiniM advanced guide”.

$view(”db”,20,dbname,nblock)

Check CRC for nblock page in dbname database. If this database does
not exist, function generate error <FUNCTION>. If nblock is negative,
function generate error <FUNCTION>. If CRC check ok, function return
1, otherwise return 0.

$view(”db”,21,dbname)

188 CHAPTER 5. STANDARD FUNCTIONS

Check CRC of all available pages in this database dbname. If this database
does not exist, function generate error <FUNCTION>. If at least one page
have incorrect CRC, function return 0, otherwise return 1. Function sequen-
tially check all pages are available in this database.

$view(”db”,22,dbname)

Function return current database size in megabytes and growing limit in
megabytes comma delimited. If database have not growing limit, function re-
turn only database size and comma. If this database does not exist, function
generate error <FUNCTION>.

$view(”db”,23,readonly)

Function sets readonly boolean value to all databases mounted now. If
readonly evaluates as 0, all databases get write permissions, if nonzero, all
databases goes to read only. Function return an empty string.

$view(”db”,24,dbname)

Function return ”ReadOnly” state for specified dbname database.

$view(”db”,24,dbname,readonly)

Function return current ”ReadOnly” state for dbname database and apply
specified in readonly ”ReadOnly” state.

5.38.2 $VIEW(”dev”)

If first argument of $view() function evaluates as a ”dev” string case insen-
sitive, if is group of functions to support extended device functionality.

$view(”dev”,1)

Return socket number for current device if it is TCP device, otherwise
function generate an error <FUNCTION>.

$view(”dev”,1,devname)

Return socket number for specified device if it is TCP device, otherwise
function generate an error <FUNCTION>.

$view(”dev”,2)

Return accepted socket number for current device if it is TCP device,
otherwise function generate an error <FUNCTION>.

$view(”dev”,2,devname)

Return accepted socket number for specified device if it is TCP device,
otherwise function generate an error <FUNCTION>.

5.38. $VIEW 189

$view(”dev”,3,devname)

If this device is a TCP or TNT device, function return remote computer
name connected to. If device does not connected or is not TCP or TNT
device, function return an empty string.

$view(”dev”,4,devname)

If this device is a TCP or TNT device, function return remote computer
IP address connected to. If device does not connected or is not TCP or TNT
device, function return an empty string.

$view(”dev”,5,mask,timeout)

If current device is a COM device, function waits COM port event spec-
ified by the mask mask. Optional argument timeout specify event waint
timeout in seconds. If current device is not COM device, function generate
an error <FUNCTION>.

Value of mask evaluates as an integer and need to be a sum of event flags,
flags can be the following:

#0040 A break was detected on input.
#0008 The CTS (clear-to-send) signal changed state.
#0010 The DSR (data-set-ready) signal changed state.
#0080 A line-status error occurred (frame, overrun, par-

ity).
#0100 A ring indicator was detected.
#0020 The RLSD (receive-line-signal-detect) signal

changed state.
#0001 A character was received and placed in the input

buffer.
#0002 The event character (specified by EVTCHAR op-

tion) was received and placed in the input buffer.
#0004 The last character in the output buffer was sent.

If timeout expired function return value 0. If one or more specified events
occurs, function return sum of occured events flags.

Masks are single bits in separate positions of binary representation of
integer. And common integer value is a sum of all available masks. To select
special bit we can use arithmetic operators \ and #. For example, let it be
sum of two numbers: #10+#20 (16+32). And, to determine separate bits
we can use operators (here use hexadecimal numbers):

USER>w (#10+#20\#10#2)

190 CHAPTER 5. STANDARD FUNCTIONS

1

USER>w (#10+#20\#20#2)

1

USER>w (#10+#20\#40#2)

0

USER>w (#10+#20\#8#2)

0

Here was determined that inside integer 48 are present masks #10 and
#20, but are not presents masks #40 and #8. To distinquish write # com-
mand and hexadecimal numbers, write arguments are placed into parenthesis.

$view(”dev”,6,mask)

If currende device is a COM device, function sets up or control port
signals. If current device is not COM device, function generate an error
<FUNCTION>.

Value of mask argument evaluates as an integer and need to be an oper-
ation code:

6 Clears the DTR (data-terminal-ready) signal.
4 Clears the RTS (request-to-send) signal.
5 Sends the DTR (data-terminal-ready) signal.
3 Sends the RTS (request-to-send) signal.
1 Causes transmission to act as if an XOFF charac-

ter has been received.
2 Causes transmission to act as if an XON character

has been received.
8 Suspends character transmission and places

the transmission line in a break state until
$view(”dev”,6,mask) with mask = 9 is called.

9 Restores character transmission and places the
transmission line in a nonbreak state.

7 Reset device if possible.

Function return empty string.

$view(”dev”,7)

If current device is COM device, function return masked state of modem
signals (if modem is connected to port). If current device is not COM device,
function generate an error <FUNCTION>.

5.38. $VIEW 191

Return value is a sum of masks:

#10 The CTS (clear-to-send) signal is on.
#20 The DSR (data-set-ready) signal is on.
#40 The ring indicator signal is on.
#80 The RLSD (receive-line-signal-detect) signal is on.

$view(”dev”,8)

If current device is a FILE device, function return current file offset.
Otherwise functino generate an error <FUNCTION>.

$view(”dev”,8,devname)

If specified device is a FILE device, function return current file offset for
this device. Otherwise functino generate an error <FUNCTION>.

$view(”dev”,9,devname)

Function returns MNEMSPASE, assigned to device pointed to by dewv-
name.

$view(”dev”,10)

If current version full MiniM Database Server and not MiniMono, and
current device is console (CON),, function returns number of characters on
the screen as number of columns and number of lines separated by colon. If
current version MiniMono or current device is not console, function returns
an empty string.

5.38.3 $VIEW(”err”)

If first argument of $view() function evaluates as a ”err” string case insensi-
tive, if is group of functions to return extended error information.

$view(”err”,1)

Function return place of last error occured in the source code as file name
* line number. It is debugging information which can help developers to
localise and fix error.

$view(”err”,2,errnumber)

Function return extended error text by error code. Error codes defined
by MUMPS standard and returns by system variable $ecode with prefix ”M”.
For example, call to undefined local variable occurs an error ”M6”:

192 CHAPTER 5. STANDARD FUNCTIONS

$ecode=",M6,"

To get error extended text it is need to pass error code as errnumber, for
example:

w $view("err",2,6)

Undefined local variable.

If errnumber is not MUMPS standard error code or does not supported
by MiniM Database Server in current version, function generate an error
<FUNCTION>.

$view(”err”,3)

Function return code returned by last ZDLL call. This value is returned
by exported from external dll function. If function executes normally, return
value is 0 by default, otherwise it is error and $zdll() function generate an er-
ror <FUNCTION>. Programmer can use $view(”err”,3) function to analize
what happens with external dll. If external function violates memory access,
$view(”err”,3) function return value -1. After process start last ZDLL return
value is 0 even if $zdll() function does not called.

5.38.4 $VIEW(”file”)

If first argument of $view() function evaluates as a ”file” string case insensi-
tive, if is group of functions to control files and directories of file system.

$view(”file”,1,name)

Return information about name: 1 - it is existing file, 2 - it is existing
directory, 0 - not existing file and not existing directory.

$view(”file”,2,name)

Function return date and time of file / directory changed in $horolog
format. If name does not corresponds any existing file or directory, function
return an empty string. Date and time returned use local time.

$view(”file”,3,name)

Function return date and time of file / directory created in $horolog for-
mat. If name does not corresponds any existing file or directory, function
return an empty string. Date and time returned use local time.

$view(”file”,4,name)

5.38. $VIEW 193

Function return date and time of file / directory last access in $horolog
format. If name does not corresponds any existing file or directory, function
return an empty string. Date and time returned use local time.

$view(”file”,5,name)

Function return file size in bytes. If name does not corresponds existing
file, function return an empty string.

$view(”file”,6,name)

Function delete file. If deletion syccessfull, function return 1, otherwise
0. Function does not support name masks.

$view(”file”,7,name)

Function delete directory. If deletion syccessfull, function return 1, oth-
erwise 0. Function does not support name masks.

$view(”file”,8,name,newname)

Function rename file or directory from name to newname. If operation
syccessfull, function return 1, otherwise 0. Function does not support name
masks.

$view(”file”,9,name,newname[,FailIfExist])

Function copy file from name into newname. Argument FailIfExist eval-
uates as an integer and compares with 0. If Argument FailIfExist does not
specified, it supposed as 1. If value of FailIfExist evaluates as nonzero, func-
tion fails if file with newname name already exists. If FailIfExist evaluates
as 0, function ignores newname file existence and overwrites.

$view(”file”,10,name)

Function return string with symbols to indicate file or directory attributes.
If function failed to determine attributes, it return -1 value. Attribute sym-
bols are:

A Archive.
C Compressed.
D Directory.
H Hidden.
O Offline.
R Read only.
S System.

$view(”file”,11,name)

194 CHAPTER 5. STANDARD FUNCTIONS

Function return short file name in 8.3 format. If function fails, return is
an empty string.

$view(”file”,12)

Function return string with available drive letters.

$view(”file”,13,name)

Return indicator of write type of specified name location.

0 Function failed to determine drive type.
1 Specified directory does not exist.
REMOVABLE Drive has removable media.
FIXED Drive is fixed.
REMOTE It is remote or network drive.
CDROM Drive id CD-ROM or DVD-ROM media drive.
RAMDISK Drive is in-memory RAM disk.

$view(”file”,14,name)

Function return total size on drive and free size on drive comma delimited.
Sizes are returned in bytes. If function fails to determine size, function return
an empty string.

$view(”file”,15,names)

Function delete files and directories with subdirectories recursively. Ar-
gument names can contain file mask symbols (*,?). Function support several
names in names argument delimited by $c(0) symbol. If function complete
successfully, return 1 otherwise return 0.

$view(”file”,16,name)

Function create a directory name. If function complete successfully, re-
turn 1, otherwise return 0.

$view(”file”,17,names,dir)

Function copies files and directories from names into directory dir. Argu-
ment names can contain file masks (*.?) and several names delimited by $c(0)
symbol. Argument dir can be only one directory. Function copyes files and
directories recursively with subdirectories. If function complete successfully,
return 1, otherwise return 0.

$view(”file”,18,names,to)

Function move or rename files listed in names into directory to. Argu-
ment names can contain file masks (*.?) and can contain several names

5.38. $VIEW 195

delimited by symbol $c(0). Function rename or move files with subdirecto-
ries recursively. If function complete successfully, return value is 1, otherwise
0.

$view(”file”,19,name,attrs)

Function sets to file name attributes attrs. If function complete suc-
cessfully, return 1, otherwise 0. Argument attrs specify file attributes case
insensitive as special symbols:

A Archive.
H Hidden.
R Read only.
S System.

$view(”file”,20,commandline,options,dir)

Function runs child Windows process with specified commandline and
with dir as current child process directory. Function does not wait while
process terminates and return id of child process. If function fails, return
code is 0.

commandline Exe file name with command line parameters
options Options to run process
dir Current directory for child process

Argument commandline is child process filename with command line pa-
rameters. Function use first part of commandline up to first space as exe
name. Function search file to run in /bin subdirectory of MiniM installation,
in current directory of MiniM process, in system Windows directories and in
directories listed in PATH environment. For example:

w $v("file",20,"minimne.exe","s","")

w $v("file",20,"notepad.exe","s","")

If argument options is specified, function search in options symbol ”s” or
”S”. If this symbol is found, function show child process window, otherwise
not and run process with hidden window.

If argument dir is not empty string, function use it as current directory
for child process.

$view(”file”,21,commandline,options,dir)

196 CHAPTER 5. STANDARD FUNCTIONS

Function runs child Windows process with specified commandline and
with dir as current child process directory. Function waits while process
terminates and return process exit code.

$view(”file”,22,name)

Function return full long file name for file with name. If function fails, or
this file does not exist, function return an empty string.

5.38.5 $VIEW(”jrnl”)

If first argument of $view() function evaluates as a ”jrnl” string case insen-
sitive, if is group of functions for journaling operations and settings.

$view(”jrnl”,1)

Function return current journal directory. This directory contains special
journal files.

$view(”jrnl”,2)

Return current journal file name.

$view(”jrnl”,3)

Function switch current journal file to new next name. Next journaling file
name created automatically. Previous used journaling file does not used by
journal daemon and journal daemon append records only to last used journal
file. All journal files can be used for backup, rollback currently uncomplete
trunsactions and to restore database. All journal files need to be saved if this
operations need to be executed.

Function returns empty string. This function only creates a signal to
journaling daemon and real file switch do this daemon. So between signal
and real switch of journal file may pass a time. Application can monitor the
value returned by $view(”jrnl”,2) function and wait file name changes.

$view(”jrnl”,4,filename)

Function check file filename and return 1 if it is MiniM journal file, oth-
erwise return 0.

$view(”jrnl”,5)

Function send signal to journal daemon to truncate journal. Function
only send signal and return immediately. Function return an empty string.

On journal truncation daemon transform journal files (series of files) to
keep only need to complete currently uncomplete transactions. And result

5.38. $VIEW 197

size of journal files can be small or big depending server activity. Journal
daemon truncate journal until special journal record ”no transactions”. This
special journal marker created periodically, on server start, or database re-
store and on transaction rollback if detected ”no transactions” state.

Journal truncation can be made by database administrator manually or
automatically with backup. And journal truncation is recommended with
full backup, because database files can be restored with backup and journal
tail created after backup. To complete operation journal daemon can use
disk space not greater than current total size of journal files.

$view(”jrnl”,6,filename)

Function closes earlier opened for dumping journal file and opens this file
if it is MiniM journal file. After this opening this file is used for journal
dumping operations without extra file opening and closing.

Function return string with two comma-delimited positions: first jour-
naling record and last journaling record. For example, if return value is
”4096,7864” this mean the first comma-delimited number 4096 is position of
first record in current dumped file, and second number 7864 is position of the
last record. This positions can be specified in record dump function number
9.

$view(”jrnl”,7)

Function closes earlier opened for dumping journal file. After closing all
dumping operations return empty information.

$view(”jrnl”,8,varname)

Function dump header of currently dumped journal file into subindices
of variable specified by name varname. This name can be local or global
variable and can have indises.

Function writes into varname subindices the following information:

,1) = version

Current MiniM uses version 1.

,2) = prior file name

MiniM journal consists of list of separate files linked each other. File
header contains names of prior and next file. File names are specified in
short name, without full path.

If no any prior files was specified, this value is empty string.

,3) = next file name

198 CHAPTER 5. STANDARD FUNCTIONS

If file have link to next journal file, this value contains name of the next
file without full path, otherwize it is empty string.

Function return current size of file header in bytes. This is version-
dependent value. If was not opened journal file for dumping, function does
not write any information into varname and return empty string.

Function don’t kill value of varname or any subindices and only writes
or overwrites values, so application developer shouls decide what killing or
newing operations have to be executed.

$view(”jrnl”,9,position,varname)

Function dump one journal record from currently opened journal file for
dumping. Function use specified position and check this position is legal
position inside of this file. Of no, function return empty string.

Function return two position, comma delimited - of prior journal record
and of next journal record. If prior record does not exist (this was first), in
first position function return empty string, for example:

”,34988”

If next position does not exist, function return empty string in in last
position, for example:

”25668,”

Function writes record information into subindices of variable specified
by name varname. This varible function does not new or kill and only writes
or overwrites values. Application developer should decide how this variable
should be cleared.

Each journal record have common information block, this are:

,1) = record type

Each record have internal type and in depend of them MiniM read addi-
tional information if it need. Record types are simple numbers 1, 2, 3, ... In
depending of type function dumps additional information, described later.

,2) = pid

This is process identifier of MiniM process made this operation. In most
cases this is real number of job (value of $JOB variable of executed process).
But it is not mandatory rule. In MiniMono varsion this is thread number. If
operation was executed not by MiniM process but by any of MiniM daemon,
this can be process identifier of daemon or thread identifier of daemon in
MiniMono version.

5.38. $VIEW 199

,3) = tsn

TSN is transaction sequence number, internal number inside of all MiniM
transactions. At any transaction start MiniM process aquire next tsn. This
value are unique between all MiniM processes or this value can be 0 if process
executes operation outside of transaction context.

After common data function writes values in depending of the record
type.

type = 1

This means ”Begin Transaction” operation and record has not additional
information.

type = 2

This means ”Begin Transaction Level” operation, this records when pro-
cess executes tstart command and process already is in the transaction state.
Additional information is value of $tlevel:

,4) = tlevel

type = 3

This mean ”Empty Operation” and is used for internal debugging marks.
Release version of MiniM does not contain this type of record.

type = 4

This mean ”Set” and this set overwrites prior value. Additional informa-
tion values are:

,4) = name

This is full name of global node with database specification and with full
indices specification.

,5) = old value

It is value was in this global before this set operation executed.

,6) = new value

It is value assigned to this global.

If this record is used in rollback operation, system which implement rolling
back operation, should write old value, and system which implement repli-
cation of this record, should write new value. Anyway application developer
can compare process identifier and decide self what need to be executed.

type = 5

200 CHAPTER 5. STANDARD FUNCTIONS

This mean ”Increment” operation. Additional information contains name
of global

,4) = name

and value assigned on incremention

,5) = value

This record does not contain which value was before increment or which
value was added by $increment() function becouse it is unrollable opera-
tion. Process which implements rollback operation should ignore this journal
record and process which implements replication should apply value as is.

type = 6

This mean ”Commit” operation. Additional information contains value
of $tlevel which was at the tcommit command execution moment. This value
function writes at

,4) = tlevel

type = 7

This mean ”Kill” operation executed when the killed name has the value.
Additional information contains the name and value was at this name:

,4) = name

,5) = value

Application which implements rollback operation should restore value,
and application which implements replication of this operation should remove
the value. Or application developer should make decision based on the values
of process identifier, tsn or base on other information.

type = 8

This mean ”Rollback” operation. This type of record does not contains
additional information.

On execution TROLLBACK command MiniM swithes the process state
to internal ”no journaling” state and scans journal cache and set of journal
files until reach own TSTART command or ”No Transaction State” record.
This record stops rollback execution. While this command executes, MiniM
does not writes any additional journaling records, but changes data.

Developers of replication software should think twice how deliver data
changes to replication side. Formally speaking, replicator should scan journal
in reverse order and search records with this pid and tsn until tstart record

5.38. $VIEW 201

or ”No Transaction State” record reached. This method believe that source
processes do data changes with logically correct locks. And replication of
data changes to the other database sure that the other side can be changed
be the other ways and journal sees only data changes and does not see locks,
or local variables, or any other reasons, which can use code, who changes the
data.

type = 9

This code reserved for future use.

type = 10

This mean ”Kill Empty” operation. Unlike of the ”Kill” operation, this
record MiniM creates when killed value has not any values. Additional in-
formation is killed name:

,4) = name

Application which implements rollback operation should remove this value
and application which implements replication should remove this value too.
Or application developer should make decision based on the values of process
identifier, tsn or base on other information.

Recording operation of killing global node may be incomprehensible at
first glance. Developers of applications which rollback or replicate data
changes should decide twice. On the replication side this global node can
be set by the other way then on the source database, so there killing must
be applyed. On rollback operation this node was undefined, so it must be
undefined.

Let we have the code

s ^indexdata(1)=1

k ^indexdata

Here on removing data from global MiniM see killing of name ”indexdata”
and records this operation unlike of this node have the value. After this
MiniM scans subindices and on each existence subnode write the separate
journal record. So we have records ”Kill Empty” on ”indexdata” and ”Kill”
on ”indexdata(1)”. After this other process can insert subnode

s ^indexdata="data"

s ^indexdata(2)=2

202 CHAPTER 5. STANDARD FUNCTIONS

so after this rolling back should restore global ”indexdata” to undefined
state, restore the name ”indexdata(1)” to undefined state too and don’t
touch the name ”indexdata(2)”. There rollback executor can apply KVALUE
command.

type = 11

This mean ”Set Empty” operation. This name before the set command
has not value. Additional information are:

,4) = name

,5) = value

This record show that this name was undefined and got this value. Ap-
plication which implements rollback operation should remove this name and
application which implements replication should assign this value.

type = 12

This record mean ”Set” operation, like the record with type 4. Additional
information are the same:

,4) = name

,5) = old value

,6) = new value

MiniM uses different record types if can compress information. MiniM
split old and new value to four byte sequences - first unchanged, removed
from old value, inserted by new value and last unchanged pieces. After this
MiniM counts which type of record stores less bytes then the other. MiniM
selects type 4 if values stores as is and type 12 if values stores in splitted
form. No any other differences are between this types.

type = 13

This mean ”Set Bit” operation. This record MiniM creates when process
executes command

set $bit(name,pos) = value

This record has additional information: name, position, old bit value and
new bit value:

,4) = name

,5) = position

,6) = old bit value

5.38. $VIEW 203

,7) = new bit value

Application which implement rollback and replication operation should
mean that this operation is part of bitmap indexing code execution, so should
differentiate set one bit and assigning entire name. MiniM creates this journal
record even if global node was undefined and counts old bit value as 0.

Rollback operation should revert only one bit and ignore all other. Repli-
cation operation should set only one bit too. If this name was undefined or
bit string was shorter than need, old bit counts as 0 value. So replication
and rollback operation creates not true copy of entire value of global node,
but logical equivalent of bit string.

type = 14

This mean ”No Transaction State” operation. This record MiniM peri-
odically inserts into journal sequnce for optimization of rollback operation to
prevent scans earlier than need.

This operation does not changes any data, so applications which imple-
ment rollback or replication operations does nothing on this record type.

type = 15

This mean ”Backup” operation. When backup executes, MiniM make
additional record into journal. Additional information are: type of backup
and date of backup:

,4) = backup type

Now this are codes of backup type: 1 on full backup and 2 on differential
backup.

,5) = backup date

Backup date is string in format DD.MM.YYYY.

Other record types can be created in future MiniM versions.

5.38.6 $VIEW(”lock”)

If first argument of $view() function evaluates as a ”lock” string case insen-
sitive, if is group of functions to return locking information.

$view(”lock”,1)

Return memory size is used by locking objects for lock commands.

$view(”lock”,2)

204 CHAPTER 5. STANDARD FUNCTIONS

Return memory size total configured to use by locking objects for lock
commands.

$view(”lock”,3)

Return memory size is used by locking objects for cache page locks.

$view(”lock”,4)

Return memory size total configured to use by locking objects for cache
page locks.

5.38.7 $VIEW(”log”)

If first argument of $view() function evaluates as a ”log” string case insensi-
tive, if is group of functions to do with MiniM Database Server logging.

$view(”log”,1)

Function return current log file name.

$view(”log”,1,newfilename)

Function set up new logging file name. File nam eis limited by 255 sym-
bols. Function return previous log file name.

$view(”log”,2)

Function return current logging chunk size in bytes to switch log file.

$view(”log”,2,newchunksize)

Function set up new logging chunk size in bytes. Minimum value is 1024
bytes. Function return previous value of logging chunk size.

$view(”log”,3,arg1[,arg2...])

Function write out to log file values of expressions arg1, arg2,... in left-
to-right order. Function return an empty string.

5.38.8 $VIEW(”perf”)

If first argument of $view() function evaluates as a ”perf” string case insen-
sitive, if is group of functions to access MiniM Database Server performance
counters.

$view(”perf”,1)

5.38. $VIEW 205

Function return count of currently supported by MiniM Database Server
performance counters. Other $view(”perf”) functions accept counter number
starts from 1.

$view(”perf”,2,n)

Function return current value of MiniM performance counter with number
n. If n is unsupported number, function generate an error <FUNCTION>.

$view(”perf”,3,n)

Function return name of MiniM performance counter. If n is unsupported
number, function generate an error <FUNCTION>.

$view(”perf”,4,n)

Function return text description of MiniM performance counter. If n is
unsupported number, function generate an error <FUNCTION>.

MiniMono difference

MiniM Embedded Edition does not exposes performance counters as a
Windows performance counters but counters are still accessible by MUMPS
routines using $view(”perf”) functions.

5.38.9 $VIEW(”proc”)

If first argument of $view() function evaluates as a ”proc” string case insen-
sitive, if is group of functions to control current process settings.

$view(”proc”,1)

Function return current process settings how to use null subscripts. If
null subscripts allowed, return 1 otherwise 0. On start process got settings
from server configuration file minim.ini. Process can change this settings for
semself.

$view(”proc”,1,NullSubscripts)

Function changes current settings how to use null subscripts. If +Null-
Subscripts’=0 null subscripts allowed, otherwise denied. Function change
setting only for semself. Function return previous setting value.

$view(”proc”,2)

Function return current process journaling state. If value is 1, all global
changes made by process are journaled, otherwise not. Journal accept records
if process is in journaling state and database is in journaling state.

$view(”proc”,2,JournalFlag)

206 CHAPTER 5. STANDARD FUNCTIONS

Function changes current process journaling state and return previous
settings state. If JournalFlag is nonzero, journaling for process is enabled,
otherwise disabled.

$view(”proc”,3,JobNumber)

Function suspend specified MiniM process (job) execution. If specified
process currently still in read or other state with timeout, internal timer
still active and after unfreezing process this operation can be stopped by
timeout expiration. To resume process execution process must call func-
tion $view(”proc”,4,JobNumber). This function cannot be used with current
process.

$view(”proc”,4,JobNumber)

Resume process execution previously suspended by function $view(”proc”,3,JobNumber).
This function cannot be used with current process.

$view(”proc”,5)

Function return current end-of-file handling mode. Function return 1
if process generate <ENDOFFILE> error on en-of-file error. It is default
MiniM setting.

$view(”proc”,5,mode)

Function return current end-of-file handling mode and setup new mode.
If value is zero, process does not generate <ENDOFFILE> error and process
must check $zeof variable state.

$view(”proc”,6)

Function return current \bin directory of MiniM instance. For example:

USER>w $view("proc",6)

W:\MiniM\bin\

$view(”proc”,7)

Function return current MiniM process directory, for example:

USER>w $v("proc",7)

W:\MiniM\bin

Return values may differ for other processes if processes runs from logi-
cal disks, created by subst Windows command, but all values are the same
phisical directories.

5.38. $VIEW 207

In the most cases current process directory is the same directory as \bin
of current MiniM instance.

$view(”proc”,8)

Return number of environment variables for current process.

$view(”proc”,8,n)

Return environment variables pair as ”name=value” for specified envi-
ronment variable number. For example:

USER>w $v("proc",8,4)

COMPUTERNAME=AUGUST

USER>w $v("proc",8,5)

ComSpec=E:\WINNT\system32\cmd.exe

If argument n is less than 0 or greater than available, function return an
empty string. Function counts environment variables from 0.

$view(”proc”,9,name)

Function return current environment variable by name. If this variable
does not found, function return an empty string. Environment variable name
is used case-insensitive, for example:

USER>w $v("proc",9,"comspec")

E:\WINNT\system32\cmd.exe

If passed environment variable name terminates with symbol ”=”, func-
tion remove this environment variable for current process.

$view(”proc”,10)

Function suspend execution of all other processes except semself and dae-
mons. Also function suspend new MiniM process creation.

$view(”proc”,11)

Function resume execution of all other processes and new MiniM process
creation.

$view(”proc”,12)

Function suspend new MiniM process creation. All available processes
still work, but new processes on creation still wait permission to run. If cur-
rent process terminates or halts, new process creation mode is automatically
restored to allow to start.

208 CHAPTER 5. STANDARD FUNCTIONS

$view(”proc”,13)

Function allow to start new MiniM processes. By default this mode is
on.

$view(”proc”,14)

Function evaluates and returns value of current process priority.

$view(”proc”,14,value)

Function sets up new value of process priority and return prior priority
value.

Values of process priorities used by function $view(”proc”,14), are depen-
dend of the target operating system of MiniM Database Server:

Windows version:

-2 IDLE priority, lowest of all possible.
-1 Priority lower than normal.
0 Normal priority, and priority of the MiniM process by

default.
1 Priority above normal.
2 High priority.
3 Real-time priority, highest possible priority.

Linux version:

Values of process priority are integer numbers between and including
values of -20 and 20. Value 0 is normal and default MiniM process priority.
Values lower than 0 are low priority and -20 is lowest. Values above 0 are
high priority and 20 is highest possible.

$view(”proc”,15)

Function returns limit of process number can be run in current MiniM
instance. Total limit counts as a licensed number of processes in minim.lic
key file plus 3 engineer processes.

$view(”proc”,16)

Function returns current number of running jobs in current MiniM in-
stance. While this function counts, no any other processes can be run or
stop and this functions counts over freezed ˆ$JOB state. After function
return other processes can be run and stop.

5.38. $VIEW 209

5.38.10 $VIEW(”rou”)

If first argument of $view() function evaluates as a ”rou” string case insensi-
tive, if is group of functions to operate by compiler to bytecode.

$view(”rou”,”c”,rouname)

Function compile routine’s source code into bytecode. Function return
0 if compilation successful, otherwise function return error count was de-
tected. Function write out to current device compilation messages. Result
of compilation is a special record in ˆrOBJ global with routine’s bytecode. If
compilation successful, routine is ready to execute and is changes in internal
routine cache. Other processes which execute this routine can detect routine
bytecode changes and generate an error <EDITED>.

$view(”rou”,”s”,line)

Function make syntax parsing line as line of commands. If code line is
syntax correct, function return an empty string, otherwise function return
text with syntax error detected. Current values of $zerror and $ecode does
not changes.

210 CHAPTER 5. STANDARD FUNCTIONS

Chapter 6

Z - Functions

6.1 $ZABS

Function return absolute value of argument evaluated as a number.

Syntax

$ZABS(arg)

Definition

arg Expression to evaluate as a number and return absolute
value.

Function $zabs() evaluates argument as a number and return it’s absolute
value (module).

TEMP>w $zabs("+7.0e+1 degrees")

70

TEMP>w $zabs("-7.0e-1 is approximate value of 135 degrees")

.7

TEMP>w $zabs(456)

456

TEMP>w $zabs(-123)

123

If arg does not starts with numeric symbols, function evaluates it as 0
value.

TEMP>w $zabs("")

211

212 CHAPTER 6. Z - FUNCTIONS

0

TEMP>w $zabs("-")

0

TEMP>w $zabs("abcd")

0

6.2 $ZARCCOS

Function return arc cosine in radians.

Syntax

$ZARCCOS(Number)

Definition

Number Expression evaluated as a number.

Argument Number must be between -1 and 1; other values generate an
error <ILLEGAL VALUE>.

Examples:

TEMP>w $zarccos(-2)

<ILLEGAL VALUE>

TEMP>w $zarccos(0.8)

.643501108793284

TEMP>w $zarccos(0.2)

1.36943840600457

TEMP>w $zarccos(0)

1.5707963267949

6.3 $ZARCSIN

Function return arcsine of argument in radians.

Syntax

$ZARCSIN(Number)

Definition

Number Expression evaluated as a number.

6.5. $ZBITAND 213

Argument Number must be between -1 and 1; other values generate an
error <ILLEGAL VALUE>.

Example:

TEMP>w $zarcsin(0.7)

.775397496610753

6.4 $ZARCTAN

Function return arctangent of argument in radians.

Syntax

$ZARCTAN(Number)

Definition

Number Expression evaluated as a number.

Function return arctangent of argument in radians. Return values are
from -1.57079 (−π/2) to 1.57079 (+π/2).

Example:

TEMP>w $zarctan(1)

.785398163397448

6.5 $ZBITAND

Function return bitwise logical operation over two zbitstrings.

Syntax

$ZBITAND(bitstr1,bitstr2)

Definition

bitstr1 First argument, zbitstring.
bitstr2 Second argument, zbitstring.

Function $zbitand() use arguments as zbitstrings, evaluates bitwise AND
operation and return result as zbitstring too. If one argument have smaller
bit length, function create result using smaller zbitstring and counts absent

214 CHAPTER 6. Z - FUNCTIONS

bits as 0.

If one of argument does not containt valid zbitstring, function $zbitand()
generate an error <FUNCTION>.

For example, if bitstr1=[1010], bitstr2=[10000000], function return new
zbitstring [1000].

6.6 $ZBITCAT

Function return zbitstring as concatenation of two zbitstrings.

Syntax

$ZBITCAT(bitstr1,bitstr2)

Definition

bitstr1, bitstr2 Expression with zbitstrings values.

Function $zbitcat() makes new zbitstring with bits concatenated from
argument’s zbitstrings bitstr1 with following bitstr2. Result length in bits is
equal sub of argument’s length in bits.

Examples:

USER>s a=$zbitstr(9,1)

USER>s b=$zbitstr(9,0)

USER>s str=$zbitcat(a,b)

USER>f i=1:1:$zbitlen(str) w $zbitget(str,i)

111111111000000000

6.7 $ZBITCOUNT

Function return number of true bits available in zbitstring.

Syntax

$ZBITCOUNT(bitstr)

Definition

6.8. $ZBITEXTRACT 215

bitstr Argument evaluated as a string and containing zbit-
string.

Function $zbitcount() return number of true bits are available in specified
zbitstring. If argument bitstr is not valid zbitstring, function generate an
error <FUNCTION>. For example, for bitstr = [1100011] function return
4:

USER>s str=$zbitstr(7,1)

USER>s str=$zbitset(str,3,0)

USER>s str=$zbitset(str,4,0)

USER>s str=$zbitset(str,5,0)

USER>w $zbitcount(str)

4

6.8 $ZBITEXTRACT

Function return zbitstring as a part of source zbitstring.

Syntax

$ZBITEXTRACT(bitstr,from,count)

Definition

bitstr Source zbitstring to extract bit from.
from Bit number to extract from. Bitc counted from 1.
count Number of bits to return in result zbitstring.

Function $zbitextract() return zbitstring as a part of source zbitstring
from specified in from bit and count bits length. If source bitstr is not valid
zbitstring or interval from from with length count is not a part of source
bitstr, function generate an error <FUNCTION>.

Examples:

USER>s a=$zbitstr(3,1),b=$zbitstr(3,0),str=$zbitcat(a,b)

216 CHAPTER 6. Z - FUNCTIONS

USER>f i=1:1:$zbitlen(str) w $zbitget(str,i)

111000

USER>s str=$zbitextract(str,2,3)

USER>f i=1:1:$zbitlen(str) w $zbitget(str,i)

110

6.9 $ZBITFIND

Function search and return next position of specified bit.

Syntax

$ZBITFIND(bitstr,bit[,position])

Definition

bitstr Expression evaluated as a string and used as a zbitstring.
bit Expression evaluated as 0 or 1 and specified what bit to

be search.
position Optional, specify position to start search from.

Function $zbitfind() search specified bit bit in source bitstr from specified
position position. If function find in next position this bit, function return a
position number after found bit.

If function cannot find specified bit, function return 0.

If argument position does not specified, function start search from bitstr
first bit.

If specified position is less then 1 or is greater than maximum allowed
(262128 = 32766 ∗ 8), function generate an error <FUNCTION>.

Example:

TEMP>s str=$zbitstr(5,1)

TEMP>s i=1 f s i=$zbitfind(str,1,i) q:’i w i,!

2

3

4

5

6

6.11. $ZBITLEN 217

6.10 $ZBITGET

Function return bit value at specified position.

Syntax

$ZBITSTR(bitstr,position)

Definition

bitstr Expression evaluated as a string to return bit value from.
position Position in zbitstring to return bit value.

Function $zbitget() return bit value (0 or 1) from source bitstr as zbitstring
at specified position position.

Bit positions counts from 1.

If specified position is less then 1 or is greater than maximum allowed
(262128 = 32766 ∗ 8), function generate an error <FUNCTION>.

Example:

TEMP>s str=$zbitstr(5,1)

TEMP>f i=1:1:$zbitlen(str) w $zbitget(str,i)

11111

6.11 $ZBITLEN

Function return number of bits available in zbitstring.

Syntax

$ZBITLEN(bitstr)

Definition

bitstr Expression evaluated as a string and used as zdinstring
to get number of bits.

Function $zbitlen() return number of bits total available in specified zbit-
string bitstr. Function return number of bits including 0 and 1 bits. If value
of bitstr is not valid zbitstring, function generate an error <FUNCTION>.

Examples:

218 CHAPTER 6. Z - FUNCTIONS

TEMP>w $zbitlen($zbitstr(9,1))

9

TEMP>w $zbitlen($zbitstr(15,0))

15

6.12 $ZBITNOT

Function return zbitstring with inverted bits values.

Syntax

$ZBITNOT(bitstr)

Definition

bitstr Expression evaluated as a string with zbitstring to in-
vert.

Function $zbitnot() creates zbitstring from source bitstr and invert all bits
available. If source bitstr is not valid zbitstring, function generate an error
<FUNCTION>.

Examples:

TEMP>s str=$zbitstr(25,1)

TEMP>f i=1:1:$zbitlen(str) w $zbitget(str,i)

1111111111111111111111111

TEMP>s str=$zbitnot(str)

TEMP>f i=1:1:$zbitlen(str) w $zbitget(str,i)

0000000000000000000000000

6.13 $ZBITOR

Function make bitwise logical OR with two zbitstrings and return result.

Syntax

$ZBITOR(bitstr1,bitstr2)

Definition

bitstr1 First argument, zbitstring.
bitstr2 Second argument, zbitstring.

6.14. $ZBITROT 219

Function $zbitor() use arguments as zbitstrings, evaluates bitwise OR
operation and return result as zbitstring too. If one argument have longer
bit length, function create result using longer zbitstring and counts absent
bits as 0.

If one of argument does not containt valid zbitstring, function $zbitor()
generate an error <FUNCTION>.

For example, if bitstr1=[1010], bitstr2=[10000000] function $zbitor() re-
turn result [10100000].

6.14 $ZBITROT

Function return zbitstring with cyclically shifted (rotated) bits.

Syntax

$ZBITROT(bitstr,direction)

Definition

bitstr Expression evaluated as a string and used as a source
zbitstring.

direction Expression evaluated as a bits shift (rotate) direction.

Function $zbitrot() rotate bits of source zbitstring left or right and return
result. It is cyclical bits shifting by one. If value of direction evaluates as
1, function rotate right, if evaluates as -1, rotate left, otherwise function
generate an error <FUNCTION>.

Examples:

Rotate right:

USER>s a=$zbitstr(3,1),b=$zbitstr(3,0),str=$zbitcat(a,b)

USER>f i=1:1:$zbitlen(str) w $zbitget(str,i)

111000

USER>s str=$zbitrot(str,1)

USER>f i=1:1:$zbitlen(str) w $zbitget(str,i)

011100

Rotate left:

220 CHAPTER 6. Z - FUNCTIONS

USER>s a=$zbitstr(3,1),b=$zbitstr(3,0),str=$zbitcat(a,b)

USER>f i=1:1:$zbitlen(str) w $zbitget(str,i)

111000

USER>s str=$zbitrot(str,-1)

USER>f i=1:1:$zbitlen(str) w $zbitget(str,i)

110001

6.15 $ZBITSET

Function return zbitstring with one bit changed.

Syntax

$ZBITOR(bitstr,position,bit)

Definition

bitstr Expression evaluated as a string and used as a source
zbitstring.

position Expression evaluated as a number with bit position.
bit New value of bit.

Function $zbitset() use argument bitstr as a source zbitstring and changes
one bit in position position to value of bit. If source bitstr is not valid zbit-
string, function generate an error <FUNCTION>. Return value is source
zbitstring with one bit changed.

Argument position evaluates as an integer, If this value is less then 1 or
greater then maximum allowed (262128 = 32766 ∗ 8), function generate an
error <FUNCTION>. If position show outside of available in zbitstring posi-
tion, function does not expand bitstr and generate an error <FUNCTION>.

Value of bit evaluates as an integer and compares with 0, if it is 0, function
sets bit to 0, otherwise sets bit to 1.

Examples:

TEMP>s str=$zbitstr(15,1)

TEMP>f i=1:1:$zbitlen(str) w $zbitget(str,i)

111111111111111

TEMP>s str=$zbitset(str,12,0)

6.17. $ZBITXOR 221

TEMP>f i=1:1:$zbitlen(str) w $zbitget(str,i)

111111111110111

6.16 $ZBITSTR

Function return zbitstring with specified bits count.

Syntax

$ZBITSTR(Count,Bit)

Definition

Count Count of bits in result zbitstring.
Bit Value of bits to fit result.

Function $zbitstr() creates and return new zbitstring value. Count of bits
in result is specified by Count and bits value to fit result is specified by Bit.

Value of Count must be greater than 0 and less than 262128 (32766 ∗ 8).

Value of Bit evaluates as an integer and compares with 0, if it is 0, result
zbitstring fits with 0 bits, otherwise fits with 1 bit.

Examples:

TEMP>ZZDUMP $ZBITSTR(-12,2)

<FUNCTION>

TEMP>ZZDUMP $ZBITSTR(500000,2)

<FUNCTION>

$zbitstr(15,1) return zbitstring with 15 bits of 1.

$zbitstr(32,0) return zbitstring with 32 bits of 0.

6.17 $ZBITXOR

Function make bitwise logical exclusive OR (XOR) with two zbitstrings and
return result.

Syntax

222 CHAPTER 6. Z - FUNCTIONS

$ZBITXOR(bitstr1,bitstr2)

Definition

bitstr1 First argument, zbitstring.
bitstr2 Second argument, zbitstring.

Function $zbitxor() use arguments as zbitstrings, evaluates bitwise XOR
operation and return result as zbitstring too. If one argument have smaller
bit length, function create result using smaller zbitstring and does not fit
absent bits.

If one of argument does not containt valid zbitstring, function $zbitxor()
generate an error <FUNCTION>.

For example, if bitstr1=[1010], bitstr2=[10000000], function $zbitxor()
return result [0010].

6.18 $ZBOOLEAN

Function create bitwise operation over arguments and return result.

Syntax

$ZBOOLEAN(arg1,arg2,bitoper)

$ZB(arg1,arg2,bitoper)

Definition

arg1 First argument, string or an integer.
arg2 Second argument, string or an integer.
bitoper Logical operation code.

Function $zboolean() make a bitwise operation over two arguments arg1
and arg2, where operation code is specified by bitoper argument. Function
return result of bitwise operation.

Function use arguments arg1 and arg2 both as integers or both as a
strings. If one of argument evaluates as a fractional number, function gen-
erate an error <FUNCTION>. If both arguments are integers, result is
integer, otherwise both arguments are used as a strings and function make
bitwise operation over bytes of strings.

If arguments arg1 and arg2 are used as a strings, result is based on arg1

6.18. $ZBOOLEAN 223

length, if operation does not specify other. If length of arg2 is greater than
length of arg1, function use only bytes to arg1 length. If length of arg2 is less
than arg1, function apply bytes of argument arg2 cyclically.

Value of bitoper evaluates as an integer and used as value from 0 to 15
inclusively. If value of bitoper is less than 0, function use 0, if value is greater
than 15, function use only 4 low order bits of bitoper and gets value from 0
to 15.

Values of bitoper corresponds to bitwise logical operators:

0 0

1 arg1 & arg2

2 arg1 & ~ arg2

3 arg1

4 ~ arg1 & arg2

5 arg2

6 arg1 ^ arg2

7 arg1 ! arg2

8 ~ (arg1 ! arg2)

9 ~ (arg1 ^ arg2)

10 ~ arg2

11 arg1 ! ~ arg2

12 ~ arg1

13 ~ arg1 ! arg2

14 ~ (arg1 & arg2)

15 -1

Here are defined operators:

& AND

! OR

~ NOT

^ exclusive OR

If programmer want to guarantee argument using as an integers, it can
be done using the ”+” (plus) operator, and using argument as a string can
be done using concatenation with an empty string.

Examples:

224 CHAPTER 6. Z - FUNCTIONS

USER>w $zb(1,2,3)

1

USER>w $zb(1,2,6)

3

USER>w $zb(1,2,7)

3

USER>w $zb(1,2,12)

-2

USER>w $zb("aa","bb",7)

cc

USER>s xorkey="this is key"

USER>s str1="this is string with data"

USER>s str2=$zb(str1,xorkey,6)

USER>s str3=$zb(str2,xorkey,6)

USER>w str1,!,str3,!

this is string with data

this is string with data

USER>w str2

??

???SW HK??

6.19 $ZCOS

Function return cosine of angle in radians.

Syntax

$ZCOS(Number)

Definition

Number Exmpression evaluated as a number.

Cosine evaluates for numbers between −π and π (may be applied system
variable $ZPI), all other numbers reduced to a canonical interval.

Example:

>w $zcos(-3*$zpi/4)

6.21. $ZCRC 225

-.7071067811865475242

Math function operate with numbers with some possible miscalculation.

TEMP>w $zcos($zpi/2)

6.12303176911189E-17

6.20 $ZCOT

Function return cotangent of angle in radians.

Syntax

$ZCOT(Number)

Definition

Number Exmpression evaluated as a number.

Function evaluates cotangent for angles between −π and π (may be ap-
plied system variable $ZPI), all other numbers reduced to a canonical inter-
val.

Function $zcot() operate with numbers with some possible miscalculation
and some arguments can cause errors and some can not.

TEMP>w $zcot(0)

<DIVIDE>

TEMP>w $zcot($zpi/4)

1

TEMP>w $zcot($zpi)

-8.16588936419E+15

TEMP>w $zcot($zpi/2)

6.12303176911E-17

6.21 $ZCRC

$ZCRC

Function calculate and return checksum.

Syntax

226 CHAPTER 6. Z - FUNCTIONS

$ZCRC(String,Algorithm)
$ZCRC(String,Algorithm,StartValue)

Definition

String Expression evaluated as a string to check sum.
Algorithm Algorithm specification to calculate checksum.
StartValue Optional, initial value to calculate checksum.

Checksum algorithms

Argument Algorithm can be one of the following string:

SUM 8-bit unsigned bytes sum.
XOR 8-bit XOR of the bytes.
16 16-bit CRC-16.
32 32-bit CRC-32.
CCITT 16-bit CRC-CCITT.
MD5 Hash algorithm MD5.
other Function generate an error <FUNCTION>.

Argument Algorithm is used case insensitive.

To calculate checksum of long data with several segments over 32K length
total need to be used optional argument StartValue to pass checksum for next
data segment.

For ”MD5” algorithm argument StartValue is not supported and function
generate an error <FUNCTION>.

Examples:

TEMP>w $zcrc("abcdef","XOR")

7

TEMP>w $zcrc("abcdef","XOR",3)

4

TEMP>w $zcrc("abcdef","16")

22533

TEMP>w $zcrc("abcdef","32")

1267612143

TEMP>w $zcrc("abcdef","SUM")

597

TEMP>w $zcrc("abcdef","CCITT")

62329

6.23. $ZCONVERT 227

TEMP>w $zcrc("abcdef","www")

<FUNCTION>

USER>w $zcrc("","md5")

D41D8CD98F00B204E9800998ECF8427E

USER>w $zcrc("","md5",123)

<FUNCTION>

6.22 $ZCSC

Function return cosecant of angle in radians.

Suntax

$ZCSC(Number)

Definition

Number Exmpression evaluated as a number.

Function evaluates cosecant for angles between −π and π (may be applied
system variable $ZPI), all other numbers reduced to a canonical interval.

Function $zcsc() operate with numbers with some possible miscalculation
and some arguments can cause errors and some can not.

Example:

TEMP>w $zcsc($zpi/4)

1.41421356237309

6.23 $ZCONVERT

$ZCONVERT
$ZCVT

Function convert data into or from one of supported encoding format.

Syntax

$ZCONVERT(String,Direction)
$ZCONVERT(String,Direction,Format)

Definition

228 CHAPTER 6. Z - FUNCTIONS

String Source value to convert.
Direction Convert option.

Value of Direction can be one of the following:

"l", "L" Convert String to lower case.
"u", "U" Convert String to upper case.
"o", "O" Convert String to output format.
"i", "I" Convert String from input format.

Conversion formats

"URL" Output is URL-encoding.
"XML" Replace XML entities.
"IHEX" Output format is integer in HEX encoding.
"SHEX" Output format is string in HEX encoding.
"BASE64" Output is BASE64 encoding (RFC 989)
"S1" Binary signed 1 byte
"S2" Binary signed 2 bytes
"S4" Binary signed 4 bytes
"S8" Binary signed 8 bytes
"U1" Binary unsigned 1 byte
"U2" Binary unsigned 2 bytes
"U4" Binary unsigned 4 bytes
"F4" Binary floating point 4 bytes (single precision)
"F8" Binary floating point 8 bytes (double precision)

Format name is used case insensitive. Function use for uppercase and
lowercase conversion current locale used by MiniM instance. If function
detect unsupported formats or invalid encoding, function generate an error.
Binary conversion use little-endian encoding (Intel CPU byte order).

Examples:

USER>w $zcvt("","u")

USER>w $zcvt("","l")

USER>w $zcvt("","o","url")

%D2%E5%EA%F1%F2

6.24. $ZDATE 229

USER>w $zcvt("22 < 33","o","xml")

22 < 33

USER>w $zcvt("22 < 33","o","shex")

3232203C203333

USER>w $zcvt("123456","o","ihex")

1E240

USER>s base64=$zcvt("Hello, world!","o","base64")

USER>s src=$zcvt(base64,"i","base64")

USER>w

base64="SGVsbG8sIHdvcmxkIQ=="

src="Hello, world!"

USER>zzdump $zcvt("127","o","s1")

0000: 7F

USER>w $zcvt($zcvt("250","o","u1"),"i","s1")

-6

USER>zzdump $zcvt(123.456,"o","f8")

0000: 77 BE 9F 1A 2F DD 5E 40

6.24 $ZDATE

Function convert date from $horolog format to specified date representation.

Syntax

$ZD[ATE](Value[,Format[,FormatString]])

Definition

Value Expression evaluated as an integer and used as first part
of $horolog date format.

Format Expression evaluated as an integer and used as format
code. Optional, by default 1.

FormatStringExpression evaluated as a string and used as detailed
format specification for Format = 15

Argument Value may be from -672045 (Jan 1, 1) from 2980013 (Dec
31, 9999), and if Value evaluates as an integer outside supported interval,
function generate an error <ILLEGAL VALUE>.

Argument Format specify format of date representation and can be one

230 CHAPTER 6. Z - FUNCTIONS

of the following:

0 DD Mmm YYYY (08 Mar 2006)
1 MM/DD/YYYY (03/08/2006)
2 DD Mmm YYYY (08 Mar 2006)
3 YYYY-MM-DD (2006-03-08)
4 DD/MM/YYYY (08/03/2006)
5 Mmm D, YYYY (Mar 8, 2006)
6 Mmm D YYYY (Mar 8 2006)
7 Mmm DD YYYY (Mar 08 2006)
8 YYYYMMDD (20060308)
9 Mmmmm D, YYYY (March 8, 2006)
10 W (3)
11 Www (Wed)
12 Wwwww (Wednesday)
13 D Mmmmm YYYY (8 March 2006)
14 DD.MM.YYYY (08.03.2006)

Table of symbols:

D Day of month (1-31) without leading zero if less than
10.

DD Day of month (1-31) with leading zero if less than 10.
MM Double-digited number of month (01-12).
YYYY Four figures number of year.
Mmm Short month name.
Mmmmm Long month name.
W Week day (0-6, 0-Monday, 1-Tuesday, ...).
Www Short week day.
Wwwww Full week day.

If Format is equal 15, function use FormatString argument to format day.
Argument FormatString have to specify format symbols starting with %. If
after this format specifier follows one of format symbol, function format string
as specified. If after % symbol follows % symbol again, function formats
only one % symbol. If after % symbol follows unsupported format symbols,
function outputs two symbols 00. Table of supported format symbols:

a Short week day
A Full week day

6.25. $ZDATEH 231

b Short month name
B Full month name
d Day of month
H Hour (24)
I Hour (12)
j Day of year
m Number of month
M Minute
p Symbol AM/PM
S Seconds
U Year week, when first week starts from sunday
w Week day.
W Year week, when first week starts from monday.
y Year number without century
Y Year number with century
C Century
#d Day of month without leading zeroes.
% Symbol %

Examples:

USER>w $zd($h,15,"Now is %#d day of %m month of %Y year.")

Now is 21 day of 12 month of 2008 year.

USER>w $zd($h,15,"%#d.%m.%Y %H:%S")

21.12.2008 17:31

If Format argument have unsupported value, function generate an error
<FUNCTION>.

Week day names and month names server accept from MiniM service
account. To change this values need to start MiniM service under appropriate
account and after restart MiniM process will display week day names and
month names on new language. Other symbols and format options does not
depend of MiniM service account.

6.25 $ZDATEH

Function convert date from formatter string representation into standard
$horolog format.

Syntax

232 CHAPTER 6. Z - FUNCTIONS

$ZDATEH(Value[,Format])
$ZDH(Value[,Format])

Definition

Value String to convert from.
Format Expression evaluated as an integer and used as format

number. Default value is 1.

Argument Format specify format of date representation and can be one
of the following:

0 DD Mmm YYYY (08 Mar 2006)
1 MM/DD/YYYY (03/08/2006)
2 DD Mmm YYYY (08 Mar 2006)
3 YYYY-MM-DD (2006-03-08)
4 DD/MM/YYYY (08/03/2006)
5 Mmm D, YYYY (Mar 8, 2006)
6 Mmm D YYYY (Mar 8 2006)
7 Mmm DD YYYY (Mar 08 2006)
8 YYYYMMDD (20060308)
9 Mmmmm D, YYYY (March 8, 2006)
13 D Mmmmm YYYY (8 March 2006)
14 DD.MM.YYYY (08.03.2006)

Table of symbols:

D Day of month (1-31) without leading zero if less than
10.

DD Day of month (1-31) with leading zero if less than 10.
MM Double-digited number of month (01-12).
YYYY Four figures number of year.
Mmm Short month name.
Mmmmm Long month name.

If Format argument have unsupported value, function generate an error
<FUNCTION>. Format codes are the same as format code for $zdate()
function with the exception of week days and week day names.

Minimum supported day is Jan 1, 1 and maxumum supported day is
Dec 31, 9999. If date is outside of this interval, function generate an error

6.26. $ZDLL 233

<ILLEGAL VALUE>.

Month names server accept from MiniM service account. To change this
values need to start MiniM service under appropriate account and after
restart MiniM process will accept month names on new language. Other
symbols and format options does not depend of MiniM service account.

6.26 $ZDLL

$ZDLL

Function load, unload and call functions in external dynamic libraries (ZDLL
- modules).

Syntax

$ZDLL(”load”,filename)

$ZDLL(”call”,filename,funcname[,param,...])

$ZDLL(”unload”)

$ZDLL(”unload”,filename)

Definition

filename Expression with file name of ZDLL.
funcname Expression with function name in ZDLL.
param Function parameters.

Function $zdll() load, unload and call exported external functions of dy-
namic libraries with ZDLL interface. Function can pass zero, one or more
arguments to external function and return value from ZDLL. All actions with
ZDLL module doing with single function $zdll() depending of first argument
value. This argument used case insensitive and can be one of: ”load” - func-
tion load and initialize ZDLL module, ”unload” - free specified or all ZDLL
module, and ”call” - call function in ZDLL module, pass parameters and
accept return value and error code.

LOAD

To load ZDLL module it is required second argument with dll file name to
load. Function search this module inside already loaded and if module is not
loaded, function load and initialize it. Function search file in current /bin
subdirectory, Windows system directories and in directories listed in PATH
envarinment variable. File can have any extension, it’s not of necessity to

234 CHAPTER 6. Z - FUNCTIONS

have dll extension.

If file is found, ZDLL module loads into memory and initializes. Function
$zdll() import from ZDLL function with name ”ZDLL” and call to get all
exported by module function list. After this ZDLL still loaded up to direct
call to ”unload” action or until process terminates.

It is recommended to use dll file names in Windows conventions to access
files under all MiniM processes accounts. Most recommended directory is a
/bin subdirectory of MiniM instance or special subdirectory for this ZDLL
module. Administrator must be sure the MiniM can access this dll files under
used Windows accounts.

If ”load” action completes successfully, $zdll() function return an empty
string. If any error occured, function generate an error <FUNCTION>.

UNLOAD

This action may be used in 1-argument and 2-argument forms. In 1-
argument form MiniM process unloads all loaded ZDLL modules. In 2-
argument form process unloads only specified ZDLL module if this module
already was loaded. Second argument must contain dll file name.

CALL

To handle ”call” action $zdll() function search inside already loaded
ZDLL modules this module. If module is already loaded, function call ex-
ported function from ZDLL module and module still loaded, and if this mod-
ule is not loaded, function load, call exported function and unload ZDLL
module.

To pass parameters and accept return value $zdll() function prepare inter-
nal structures in special declared interface. Function $zdll() accept variable-
length arguments and all arguments after function name will be passed to
ZDLL module as values of expressions are evaluated in left-to-right order. Af-
ter function coll exported function, return value returns into MUMPS code
as a function return value.

All arguments to exported ZDLL module functions can be passed by
values only.

If exported function return non-success result indicator, $zdll() func-
tion generate an error <FUNCTION> and last return is accessible using
$view(”err”,3) function.

ZDLL exported function get with passed arguments special set of func-
tions to call current MiniM process context to execute commands, evaluate

6.28. $ZLASCII 235

expression or convert data. Current MiniM process context can be changed
by this ZDLL callback functions, and ZDLL module can read or create local
or global variables or change values of system variables.

Special ZDLL module description for low-level programmers contains in
MiniM Advanced Guide, minimadv.pdf. Samples how to use ZDLL functions
are present in MiniM installation subdirectory /zdll.

6.27 $ZEXP

Returns the natural logarithm raised to the specified power.

Syntax

$ZEXP(Number)

Definition

Number Expression evaluated as a number.

Function $zexp() evaluates and returns the natural logarithm raised to
the specified power Number, or evaluates an exponent of Number.

Example:

TEMP>w $zexp(1)

2.71828182845905

6.28 $ZLASCII

Function converts a four-byte substring of string to a number.

Syntax

$ZLA[SCII](String[,Position])

Definition

String Expression evaluated as a string to get four-byte sub-
string from.

Position Expression evaluated as an integer to get four-byte sub-
string from. Optional.

236 CHAPTER 6. Z - FUNCTIONS

Function $zlascii() return integer calculated from four-byte substring
from source String. Decimal value of a result is converted from ASCII codes of
bytes of specified substring. If argument Position does not specified, function
gets first four-byte substring. If source String is an empty string, function
return value -1. If from specified Position source String does not contain four
bytes, function return value -1.

Function $zlascii() can be represented using standard functions and op-
erators by formula:

$zla(str,pos) = $a(str,pos) + ($a(str,pos+1) * 256) + ($a(str,pos+2)
* 256 * 256) + ($a(str,pos+3) * 256 * 256 * 256)

Examples:

TEMP>w $zla("123456")

875770417

TEMP>w $zla("123456",3)

909456435

TEMP>w $a(3)+($a(4)*256)+($a(5)*65536)+($a(6)*16777216)

909456435

TEMP>w $zla("123456",5)

-1

TEMP>w $zla("123456",-2)

-1

TEMP>w $zla("")

-1

6.29 $ZLCHAR

Function converts a number to a four-byte string.

$ZLC[HAR](Integer)

Definition

Integer Expression evaluated as an integer to convert from.

Function $zlchar() return four-byte string converted from Integer using
ASCII codes. If argument is less than 0 or is greater than 256∗256∗256∗256 =
4294967296, function return an empty string.

6.31. $ZLN 237

Function $zlchar() can be represented using standard functions and op-
erators by formula:

$zlc(n) = $c(n#256,n\256#256,n\(256**2)#256,n\(256**3))

Examples:

TEMP>w $zla("abcd")

1684234849

TEMP>w $zlc($zla("abcd"))

abcd

TEMP>w $zlc(-3)

TEMP>

6.30 $ZLCASE

Function convert all symbols to lower case.

Syntax

$ZLCASE(String)

Definition

String Expression evaluated as a string to convert from.

Function $zlcase() return string based on argument with converting all
symbols to lower case. Conversion is made using current locale file. See
configuration file minim.ini, section Server, key Locale.

Examples:

TEMP>w $zlcase("MiniM")

minim

6.31 $ZLN

Returns the natural logarithm of the specified number.

Syntax

$ZLN(Number)

238 CHAPTER 6. Z - FUNCTIONS

Definition

Number Expression evaluates as a number.

Function $zln() returns the natural logarithm of the specified Number.

Function with argument 0 or less than 0 generate an error <ILLEGAL
VALUE>.

Examples:

TEMP>w $zln(0)

<ILLEGAL VALUE>

TEMP>w $zln(-4)

<ILLEGAL VALUE>

TEMP>w $zln(4)

1.38629436111989

TEMP>w $zln("asd")

<ILLEGAL VALUE>

TEMP>w $zln(1)

0

TEMP>w $zln($zexp($zpi))

3.14159265358979

6.32 $ZLOG

Returns the base 10 logarithm value of the specified numeric xpression.

Syntax

$ZLOG(Number)

Definition

Number Expression evaluates as a number.

Function $zlog() returns the base 10 logarithm of the specified Number.

Function with argument 0 or less than 0 generate an error <ILLEGAL
VALUE>.

6.34. $ZPCREMATCH 239

Examples:

TEMP>w $zlog(0)

<ILLEGAL VALUE>

TEMP>w $zlog(-4)

<ILLEGAL VALUE>

TEMP>w $zlog(1)

0

TEMP>w $zlog(10)

1

6.33 $ZLOWER

Function convert all symbols to lower case.

Syntax

$ZLOWER(String)

Definition

String Expression evaluated as a string to convert from.

Function $zlower() return string based on argument with converting all
symbols to lower case. Conversion is made using current locale file. See
configuration file minim.ini, section Server, key Locale.

Examples:

TEMP>w $zlower("MiniM")

minim

6.34 $ZPCREMATCH

Function verify string match specified regular expression.

Syntax

$ZPCREMATCH(str,regexp[,options])

$ZPCREM(str,regexp[,options])

Definition

240 CHAPTER 6. Z - FUNCTIONS

str Expression evaluated as a string to verify.
regexp Regular expression.
options Matching options as symbol flags, optional.

Function $zpcrematch() verify match str argument to specified regular
expression regexp or not. All arguments can be specified as evaluatable ex-
pressions. Argument options specify special matching options. If options
omitted, function suppose it is equal empty string. Function returns value
1 if value of str fully match to specified regular expression regexp, otherwise
function returns 0. If function detect than regular expression has invalid
regular expression syntax, function generate an error <PCRE>.

Argument options evaluates as a string and is used as set of special flags
case insensitive. Values of options flags see in special chapter Regular Ex-
pressions, section Regular Expressions Options. Regular expressions syntax
is described in chapter Regular Expressions, section Regular Expressions Syn-
tax.

Examples:

USER>w $zpcrematch("one two","(\w+) (\w+)")

1

USER>w $zpcrematch("one two three","(\w+) (\w+)")

0

6.35 $ZPCREREPLACE

Function replace substrings matched to regular expression.

Syntax

$ZPCREREPLACE(str,regexp,with[,options])

$ZPCRER(str,regexp,with[,options])

Definition

str Source string to replace substrings in.
regexp Regular expression.
with String to substitute.
options Matching options, set of special flags, optional.

Function $zpcrereplace() search and replace in string str, substrings matched

6.35. $ZPCREREPLACE 241

to regular expression regexp to string with and return result. If argument op-
tions is present and contains matching flag ”G”, function replace all matched
occurences, otherwise replace only first found.

If argument options is present and contains matching flag ”P”, function
use value of with as string with pseudovariables. If pseudovariables has been
found in with, it substitutes.

Pseudovariables in with starts with ”$” symbol and used the following
escape rules:

$$ Outputs only one symbol$
$NNN or
${NNN}

Digits sequence NNN is used as a pseudovariable number

Other symbol sequence after ”$” symbol is used as is. Pseudovariables
numbers starts from 1. Special symbols { and } allow to specify which of
NNN digit is part of pseudovariable number and which not.

Function place into pseudovariable value part of source str, matched to
regular expression part inside parenthesis.

Argument options evaluates as a string and is used as set of special flags
case insensitive. Values of options flags see in special chapter Regular Ex-
pressions, section Regular Expressions Options. Regular expressions syntax
is described in chapter Regular Expressions, section Regular Expressions Syn-
tax.

Examples:

Single replace with pseudovariables:

USER>s re="(\w+) (\w+)"

USER>s str="**one two##three four"

USER>w $zpcrer(str,re,"-=$2 + $1=-","p")

**-=two + one=-##three four

Multiple replace with pseudovariables:

USER>s re="(\w+) (\w+)"

USER>s str="**one two##three four+++"

242 CHAPTER 6. Z - FUNCTIONS

USER>w $zpcrer(str,re,"-=${2}22 + $1=-","pg")

**-=two22 + one=-##-=four22 + three=-+++

Multiple replace without pseudovariables:

USER>s re="(\w+) (\w+)"

USER>s str="**one two##three four+++"

USER>w $zpcrer(str,re,"-=${2}22 + $1=-","g")

**-=${2}22 + $1=-##-=${2}22 + $1=-+++

If function detect regexp has invalid regular expression syntax, func-
tion generate an error <PCRE>. If function cannot complete replace us-
ing varible maximum length limitation (32K), function generate an error
<MAXSTRING>.

6.36 $ZPCRESEARCH

Function search substrings matched to regular expression.

Syntax

$ZPCRESEARCH(str,regexp[,options])

$ZPCRES(str,regexp[,options])

Definition

str Expression evaluated as a string to search substrings in.
regexp Regular expression.
options Matching options, set of special flags, optional.

Function $zpcresearch() search in string str one or more substrings speci-
fied by regular expression. If argument options is present and contain symbol
”G”, function search all occurences, otherwise search only first matched sub-
string.

If function detect regexp has invalid regular expression syntax, function
generate an error <PCRE>.

Function $zpcresearch() returns result as list of substrings found, in $list-

6.37. $ZPOWER 243

build() function format. If no any mathes found, function return an empty
string (valid list with no elements). Result contains substrings in the same
order has been found.

Argument options evaluates as a string and is used as set of special flags
case insensitive. Values of options flags see in special chapter Regular Ex-
pressions, section Regular Expressions Options. Regular expressions syntax
is described in chapter Regular Expressions, section Regular Expressions Syn-
tax.

Examples:

USER>s re="(\w+) (\w+)"

USER>s str="one two three four five six seven"

USER>s found=$zpcresearch(str,re,"g")

USER>f i=1:1:$ll(found) w $lg(found,i),!

one two

three four

five six

6.37 $ZPOWER

Function evaluates a number raised to specified power.

Syntax

$ZPOWER(Number,Exponent)

Definition

Number Expression evaluated as a number to raise.
Exponent Expression evaluated as a number to use as exponent.

Function evaluates a Number raised to Exponent power.

Function $zpower() performs tha same action as an exponentaion operator
(**).

$zpower(x,y)=x**y

If Number evaluates equal 0, the Exponent value must be positive number.

244 CHAPTER 6. Z - FUNCTIONS

If Number is less than 0, the Exponent value must be an integer.

Examples:

TEMP>w $zpower(2,10)

1024

TEMP>w $zpower(2,-0.5)

.707106781186548

6.38 $ZPREVIOUS

Return previous available variable subscript.

Syntax

$ZP[REVIOUS](name)

Definition

name Local, global or structured system variable.

Function $zprevious() with local and global variable return previous avail-
able subscript with index sorting. If previous subscript dos not exist, func-
tion returns an empty string. By the behaviour function $zprevious() is full
equivalent of more modern function $order() with second value -1.

USER>s a(1)=1,a(2)=2

USER>w $zp(a(""))

2

USER>w $zp(a(2))

1

USER>w $zp(a(1))

USER>

If function $zprevious() applied to global variable, function have a side
effect, change naked indicator. If previous subscript exists, function changes
naked indicator to this existing name, otherwise function changes naked in-
dicator to source specified name even this variable does not exist.

If argument name been specified as global name with database name,
naked indicator changes to contain full name with database name too.

6.39. $ZQASCII 245

Function $zprevious() with structured system variable depends of this
variable meaning.

Function $zprevious() was implemented for compatibility with legacy
MUMPS code.

6.39 $ZQASCII

Function converts a eight-byte substring of string to a number.

Syntax

$ZQA[SCII](String[,Position])

Definition

String Expression evaluated as a string to get eight-byte sub-
string from.

Position Expression evaluated as an integer to get eight-byte sub-
string from. Optional.

Function $zqascii() return integer calculated from eight-byte substring
from source String. Decimal value of a result is converted from ASCII codes of
bytes of specified substring. If argument Position does not specified, function
gets first eight-byte substring. If source String is an empty string, function
return value -1. If from specified Position source String does not contain
eight bytes, function return value -1.

Function $zqascii() can be represented using standard functions and op-
erators by formula:

$zqa(str,pos) = $a(str,pos) + ($a(str,pos+1) * 256) + ($a(str,pos+2)
* 256 * 256 * 256) + ($a(str,pos+3) * 256 * 256 * 256) + ($a(str,pos+4)
* 256 * 256 * 256 * 256 * 256) + ($a(str,pos+5) * 256 * 256 * 256 * 256 *
256 * 256) + ($a(str,pos+6) * 256 * 256 * 256 * 256 * 256 * 256 * 256) +
($a(str,pos+7) * 256 * 256 * 256 * 256 * 256 * 256 * 256 * 256)

Examples:

TEMP>w $zqa("123456")

-1

TEMP>w $zqa("123456789")

4050765991979987505

TEMP>w $zqa("123456789",2)

246 CHAPTER 6. Z - FUNCTIONS

4123106164818064178

TEMP>w $zqa("123456789",-5)

-1

TEMP>w $zqa("123456789",5)

-1

Notes: Internal MiniM integers are represented by 32-bit or 64-bit signed
integers, and some of numbers can be displayed as negative even if functions
$zqa() and $zqc() still work with him as with positive numbers, using as
unsigned bytes sequence.

USER>w $zqa("internet")

8387231318654873193

USER>w $zqc($zqa("internet"))

internet

For arithmetic operations maximum integer is:

TEMP>w 256*256*256*256*256*256*256*127

9151314442816847872

6.40 $ZQCHAR

Convert integer number to eight-byte string.

Syntax

$ZQC[HAR](Integer)

Definition

Integer Expression evaluated as an integera value to convert to
eight-byte string.

Function $zqchar() convert integer number to eight-byte string. Function
use ASCII codes to represent symbols in string. Negative numbers are used
as a complement to full 64-bit unsigned integer. Function $zqchar(), unlike
$char(), $zwchar(), and $zlchar() functions, does not return an empty string.

Function $zqchar() can be represented using standard functions and op-
erators by formula:

6.41. $ZQUOTE 247

$zqc(n) = $c(n#256,n\256#256,n\(256**2)#256,n\(256**3),

n\(256**4),n\(256**5),n\(256**6),n\(256**7))

Examples:

TEMP>zzdump $zqc(1234567890123)

0000: CB 04 FB 71 1F 01 00 00

USER>zzdump $zqc(-1)

0000: FF FF FF FF FF FF FF FF

Notes: Internal MiniM integers are represented by 32-bit or 64-bit signed
integers, and some of numbers can be displayed as negative even if functions
$zqa() and $zqc() still work with him as with positive numbers, using as
unsigned bytes sequence.

USER>w $zqa("internet")

8387231318654873193

USER>w $zqc($zqa("internet"))

internet

For arithmetic operations maximum integer is:

TEMP>w 256*256*256*256*256*256*256*127

9151314442816847872

6.41 $ZQUOTE

Return string with text decorated as valid MUMPS expression.

Syntax

$ZQUOTE(String)

Definition

String Expression evaluated as a string to decorate.

Function $zquote() return a string with valid MUMPS text representation
of argument. Result is returned as MUMPS code expression ready to use in
MUMPS routines. Function give a proper weigh of double quote symbol,
nonprintable symbols and $char() function limitation by argument count.

248 CHAPTER 6. Z - FUNCTIONS

Result is created using $char() function, numbers, concatenation operator
and quoted strings id need. Ordinal numbers which does not require text
decoration returnes as is. All symbols with codes greater than 127 are used
as a printable symbols.

Examples:

USER>w $zquote("internet")

"internet"

USER>w $zquote("internet"_$c(1,2,3)_""" quote")

"internet"_$C(1,2,3)_""" quote"

USER>w $zquote(789456)

789456

USER>w $zquote($zlc(789456))

"?"_$C(11,12,0)

USER>zzdump $zquote($zlc(789456))

0000: 22 D0 22 5F 24 43 28 31 31 2C 31 32 2C 30 29

6.42 $ZSEC

Function returns the trigonometric secant of the specified angle value in
radians.

Syntax

$ZSEC(Angle)

Definition

Angle Expression evaluated as a number and used as an angle
in radians.

Function evaluates ans returns the trigonometric secant of the specified
Angle in radians.

Function as all other trigonometric functions use values rounded to avail-
able decimal digits and calculations can have some miscalculation.

Examples:

TEMP>w $zsec($zpi/4)

1.41421356237309

6.44. $ZSQR 249

6.43 $ZSIN

Function returns the trigonometric sine of the specified angle value in radians.

Sintax

$ZSIN(Angle)

Definition

Angle Expression evaluated as a number and used as an angle
in radians.

Function evaluates and returns the trigonometric sine of the specified
Angle in radians.

Examples:

>w $zsin(-3*$zpi/4)

-.7071067811865475242

Function as all other trigonometric functions use values rounded to avail-
able decimal digits and calculations can have some miscalculation.

TEMP>w $zsin($zpi)

1.22460635382238E-16

6.44 $ZSQR

Function returns the square root of a specified number.

Syntax

$ZSQR(Number)

Definition

Number Expression evaluated as a number.

Function $zsqr() evaluates and returns square root of a Number.

If an argument Number evaluates as a negative number, functin generate
an error <ILLEGAL VALUE>.

Examples:

250 CHAPTER 6. Z - FUNCTIONS

TEMP>w $zsqr(4)

2

TEMP>w $zsqr(-4)

<ILLEGAL VALUE>

TEMP>w $zpower(2,0.5)=$zsqr(2)

1

6.45 $ZTAN

Function returns the trigonometric tangent of the specified angle value in
radians.

Syntax

$ZTAN(Angle)

Definition

Angle Expression evaluated as a number and used as an angle
in radians.

Function $ztan() evaluates and returns the trigonometric tangent of the
specified Angle in radians.

Function as such as all other trigonometric functions use values rounded
to available decimal digits and calculations can have some miscalculation.

Examples:

TEMP>w $ztan($zpi/2)

1.63317787283838E+16

TEMP>w $ztan($zpi/4)

1

6.46 $ZTIME

Function converts time from $horolog format to a specified by parameter.

Syntax

$ZT[IME](Value[,Format])

Definition

6.47. $ZTIMEH 251

Value Expression evaluated as an integer, time in $horolog sec-
ond fraction, seconds since day begin.

Format Optional, expression evaluates as a number, used as in-
teger format code. If not specified, by default used value
1.

Value of Value can be from 0 to 86400, and if Value evaluates outside of
this interval, function generate an error <ILLEGAL VALUE>.

Value of argument Format specify one of the following supported formats:

1 HH:MM:SS 24 hours
2 HH:MM 24 hours
3 HH:MM:SS(AM/PM) 12 hours
4 HH:MM(AM/PM) 12 hours

Examples:

USER>w $zt(12345,1)

03:25:45

USER>w $zt(12345,2)

03:25

USER>w $zt(12345,3)

03:25:45AM

USER>w $zt(12345,4)

03:25AM

For other values of Format function generate an error <FUNCTION>.

Delimiters are used by function $ztime() does not depend of MiniM service
account. Hours, minutes and seconds are always formatted with leading
zeroes.

To use $horolog with $ztime() function may be used function $piece(), for
example:

w $ztime($piece($horolog,",",2))

6.47 $ZTIMEH

Function converts time from string-formatted representation to an integer in
$horolog format, second fraction.

252 CHAPTER 6. Z - FUNCTIONS

Syntax

$ZTIMEH(Value[,Format])

$ZTH(Value[,Format])

Definition

Value Expression with string representation of the time to con-
vert from.

Format Expression with format code. Optional, by default used
code 1.

If Value contains impossible hours, minutes or seconds, function generate
an error <ILLEGAL VALUE>.

Value of argument Format specify one of the following supported formats:

1 HH:MM:SS 24 hours
2 HH:MM 24 hours
3 HH:MM:SS(AM/PM) 12 hours
4 HH:MM(AM/PM) 12 hours

For other values of Format function generate an error <FUNCTION>.

Delimiters are used by function $ztime() does not depend of MiniM service
account. Hours, minutes and seconds cen be specified with leading zeroes.

6.48 $ZUCASE

Function convert all symbols to upper case.

Syntax

$ZUCASE(String)

Definition

String Expression evaluated as a string to convert from.

Function $zucase() return string based on argument with converting all
symbols to upper case. Conversion is made using current locale file. See
configuration file minim.ini, section Server, key Locale.

6.50. $ZVERSION 253

Examples:

TEMP>w $zucase("MiniM")

MINIM

6.49 $ZUPPER

Function convert all symbols to upper case.

Syntax

$ZUPPER(String)

Definition

String Expression evaluated as a string to convert from.

Function $zupper() return string based on argument with converting all
symbols to upper case. Conversion is made using current locale file. See
configuration file minim.ini, section Server, key Locale.

Examples:

TEMP>w $zupper("MiniM")

MINIM

6.50 $ZVERSION

Function returns separate parts of the product version.

Syntax

$ZV[ERSION](Part)

Definition

Part Number of the product version part.

Function returns separate parts of the product version - bits, target op-
erating system, product version, product name or other.

Return values:

254 CHAPTER 6. Z - FUNCTIONS

Part Value
0 Number of product version, for example 1.15
1 Product name, for example MiniM or MiniMono or

other.
2 Target operating system for which this product was

built, for example Windows or Linux or other.
3 Product bits - 32, 64 or other.
4 Product build type - release, debug, test, or other.
5 Target processor architecture - i386, x64 or other.

For example, in the MiniM for Windows in 32 - bit edition function
$zversion returns the following:

USER>w $zv(0)

1.15

USER>w $zv(1)

MiniM

USER>w $zv(2)

Windows

USER>w $zv(3)

32

6.51 $ZWASCII

Function converts a two-byte substring of string to a number.

Syntax

$ZWA[SCII](String[,Position])

Definition

String Expression evaluated as a string to convert two-byte
substring from.

Position Expression evaluated as an integer, position of two-byte
substring.

Function $zwascii() extract two-byte substring of string and converts into
integer using ASCII codes of bytes. If argument Position is not specified,
function use first two bytes of String. If String is an empty string, function
return value -1. And function return value -1 if Position evaluates less than

6.52. $ZWCHAR 255

0 or from specified position String does not contain both two bytes.

Function $zwascii() can be represented using standard functions and op-
erators by formula:

$zwa(str,pos) = $a(str,pos) + ($a(str,pos+1) * 256)

Examples:

TEMP>w $zwa("")

-1

TEMP>w $zwa("123456")

12849

TEMP>w $a("1")+($a(2)*256)

12849

TEMP>w $zwa("123456",4)

13620

TEMP>w $a("4")+($a("5")*256)

13620

TEMP>w $zwa("123456",-1)

-1

TEMP>w $zwa("123456",-5)

-1

TEMP>w $zwa("123456",8)

-1

6.52 $ZWCHAR

Function converts a number to a two-byte string.

Syntax

$ZWC[HAR](Integer)

Definition

Integer Expression evaluated as an integer to convert two-byte
string from.

Function $zwchar() return two-byte string converted from Integer using
ASCII codes. If Integer id less than 0 or greater than 256 ∗ 256 = 65536,
function return an empty string.

Function $zwchar() can be represented using standard functions and op-

256 CHAPTER 6. Z - FUNCTIONS

erators by formula:

$zwc(n) = $c(n#256,n\256)

Examples:

TEMP>w $zwc(25185)

ab

TEMP>w $zwc(2518500)

TEMP>w $zwc(-456)

TEMP>

TEMP>w $zwc(123)

{

TEMP>zzdump $zwc(123)

0000: 7B 00

Chapter 7

System Variables

7.1 $DEVICE

System variable for state of current device.

Syntax

$DEVICE

$D

Definition

System variable $device is implemented for state of current device storage.
On process start value of $device is an empty string.

MiniM Database Server now does not use or change this variable on any
side effect and variable is intended for programmers usage by standard. Rec-
ommended format is a string comma delimited:

stderr,usererr,explanation

stderr Input-output error code.
usererr User error code.
explanation Error’s text description.

Variable $device can be assigned by the set command

Examples:

TEMP>w $d

257

258 CHAPTER 7. SYSTEM VARIABLES

TEMP>s $d=123456

TEMP>w $d

123456

7.2 $HOROLOG

Returns current date and time in local time comma delimited.

Syntax

$HOROLOG

$H

Definition

System variable $horolog return current date and time in local time comma
delimited. Format is:

Number of days since Dec 31, 1840

Comma

Number of seconds since day starts.

First day is Jan 1, 1841. Format of $horolog variable is a MUMPS stan-
dard format and is used by most MUMPS programs. Example:

TEMP>w $h

60987,56260

To get day number and second number there can be used a $piece()
function, for example:

TEMP>s h=$h w $p(h,",",1),!,$p(h,",",2)

60987

56348

System variable $horolog format is used by all other system funtions to
handle days and time: $zd(), $zt(), $zdh(), $zth() and closest format is used
by system variable $ztimestamp.

Value of system variable $horolog evaluates each call to variable and two
serial call to variable can return different values. To handle date and time

7.3. $ECODE 259

togethe properly it is required get pair of day and time only once and handle
this pair. Otherwise it is possible two calls to $horolog can be made in
different days.

To use only day from full date and time there is possible to use unary
plus operator to transform $horolog format to day only:

TEMP>w $h

60987,56598

TEMP>w +$h

60987

7.3 $ECODE

Returns the current error code string.

Syntax

$ECODE

$EC

Definition

On read the system variable $ecode returns current error code string with
last occured errors delimited by comma. Error codes included into MUMPS
standard, are prefixed by the ”M” symbol. Error codes added by MiniM are
prefixed by the ”Z” symbol. Standard recommended to use prefix ”U” for
the user-defined errors. Other prefixes are reserved by MUMPS standard for
future use.

If occurs an error defined by MUMPS standard, MiniM adds symbol ”M”
with following error code.

Examples:

TEMP>s $ec=""

TEMP>w a

<UNDEFINED>

TEMP>w b

<UNDEFINED>

TEMP>w $ec,!,$ze

260 CHAPTER 7. SYSTEM VARIABLES

,M6,M6,

<UNDEFINED>

If occurs an error not included into MUMPS standard and intended by
MiniM, MiniM adds symbol ”Z” with following error string. For example, if
runs cycle and user press Ctrl+C:

TEMP>s $ec=""

TEMP>f

<INTERRUPT>

TEMP>w $ec,!,$ze

,Z<INTERRUPT>,

<INTERRUPT>

Value of $ecode variable can be assigned by the set command. If this value
is an empty string, assignment done and have no other side effect. Otherwise
value of $ecode is assigned, value of $zerror changes to ”<ECODETRAP>”
and process generate an error <ECODETRAP>.

Examples:

TEMP>s $ec="abcd"

<ECODETRAP>

TEMP>w $ec,!,$ze

abcd

<ECODETRAP>

TEMP>s $ec=""

TEMP>w $ec,!,$ze

<ECODETRAP>

System variable $ecode is present only in single instance and does not
stacked on stack level creation.

7.4. $ESTACK 261

7.4 $ESTACK

Returns current stack level relative last user-defined point.

Syntax

$ESTACK

$ES

Definition

System variable $estack returns value of current stack level counted from
last user-defined stack save point. On process start this variable have value
0. On each stack level creation value of $estack automatically increments by
one.

Unlike of system variable $stack with automatically decrements by one on
stack level leaving, variable $estack on stack level leaving restored to previous
value was on previous stack level.

Value of $estack can be zeroed by the new command:

new $estack

On this code execution value of $estack sets to 0 and on return to this
stack level value of $estack is restored to 0 too. Values of $estack on previous
stack levels are stored unchanged and can be nonzero.

Value of $estack cannot be assigned by the set command.

Unlike of system variable $stack value of $estack can be restored from
zero to previous nonzero value on stack leaving.

7.5 $ETRAP

Contains string of commands to be executed when an error occurs.

Syntax

$ETRAP

$ET

Definition

System variable $etrap contains string of commands to be executed when
an error occurs.

262 CHAPTER 7. SYSTEM VARIABLES

When process starts, value of $etrap is an empty string.

Value of $etrap can be assigned by the set command. On direct assign-
ment unlike $ztrap assignment MiniM does not check syntax of new $etrap
value.

System variable $etrap can have separate value on each stack level. When
new stack level creates, new value of $etrap is copied from previous stack level.
When new separate value was created, all assignments change this value and
does not change all previous.

Value of $etrap can be created as separate value on current stack level by
the new command. If new command applies to the $etrap variable, process
creates new $etrap value and copies value from previous stack level. If was
used new command with assignment, process creates new $etrap value and
copies value from specified expression.

Examples:

TEMP>s $et="w !123,!"

TEMP>n $et

TEMP>w $et

w !123,!

TEMP>n $et="789"

TEMP>w $et

789

TEMP>

When process execution leave stack level, value of $etrap is automatically
restored to previous value.

When error was occured, value of $etrap executes as command sequence
instead of current execution line of code.

7.6 $IO

Return device identification string of current device.

Syntax

$IO

7.7. $JOB 263

$I

Definition

System variable $io return device identification string of current input-
output device. After current device changed variable $io changes the value
too unlike of $principal variable.

Current device can be changed by the use command or by the close
command with closing current device (MiniM automatically make current
a principal device) and if process returns into interactive mode in console or
in telnet.

Examples:

TEMP>s dev="|NULL|123" o dev u dev s d=$io s p=$p c dev

TEMP>w

d="|NULL|123"

dev="|NULL|123"

p="|CON|"

TEMP>w $i

|CON|

7.7 $JOB

Returns current job number.

Syntax

$J[OB]

Definition

System variable $job returns number of current process executed. This
value still unchanged all time until process terminates. At the same time all
MiniM processes have different numbers, but after termination next MiniM
process can get this used job number. Job number have not predefined
interval and is operating-system dependent.

Example:

TEMP>w $j

1608

264 CHAPTER 7. SYSTEM VARIABLES

MiniMono difference

MiniM Database Server in a $job value always return the Windows pro-
cess number, and MiniM Embedded Edition always return the Windows
thread number.

7.8 $KEY

Returns last read termination.

Syntax

$KEY

$K

Definition

System variable $key contains symbols sequence that terminated last read
command from current device. For each device MiniM supports owned value
of $key variable and value of $key can be changed if current device is changed.

If process work in interactive mode (console or telnet), value of $key
variable can be owerwritten while operator input commands. Ordinary read
comands in command input mode terminates by Carriage Return and it is a
start value of $key for commands executed in interactive mode.

Example:

TEMP>r s s k=$k w ! zzdump k

ww

0000: 0D

If read command terminates by terminator read, variable $key contains
value of terminator.

If read command terminates by timeout expiration, variable $key contains
an empty string.

On read one symbol (read *ch) variable $key contains only this symbol
was read. This behavior does not specified by MUMPS standard and is a
MiniM extended behavior.

Value of variable $key can be assigned by the set command. Assigned
value is stored in internal device data and saved until next read command
executed for this device.

7.9. $PRINCIPAL 265

7.9 $PRINCIPAL

Returns device identification string of principal device for current process.

Syntax

$PRINCIPAL

$P

Definition

System variable $principal returns device identification string of principal
device of current process. This device creates automatically on process start
and cannot be closed. Value of variable $principal still unchanged until pro-
cess terminates. This device automatically still current on process execution
return to top level in console or telnet mode and on closing current device.
Closing of principal device ignored by MiniM and have no any side effects or
error generation.

Examples:

TEMP>s dev="|NULL|123" o dev u dev s d=$io s p=$p c dev

TEMP>w

d="|NULL|123"

dev="|NULL|123"

p="|CON|"

TEMP>w $i

|CON|

7.10 $QUIT

Returns flag indicating quit with argumets is required in current context.

Syntax

$QUIT

$Q

Definition

System variable $quit return glag indicating quit command with or with-
out argument is required in current execution context. If context requires

266 CHAPTER 7. SYSTEM VARIABLES

return value, $quit returns value 1, otherwise 0. Return is required is current
execution context has been created by $$ call and does not required for do
and xecute context.

If quit with argument is required, the quit command without argument
generate an error and vice versa.

System variable $quit can be used to determine what quit command form
need to be executed for functions which can be called in both contexts - $$
call and do call.

7.11 $REFERENCE

Returns last global reference.

Syntax

$REFERENCE

$R

Definition

System variable $reference contains last global reference process made.
This value also have name naked indicator value or naked reference. On pro-
cess start last global reference is not defined and value of $reference variable
is an empty string.

Naked indicator changes on global variable evaluation, assignment, killing
and using functions $data(), $order(), $query(), $increment() if functions call
global variable.

System variable $reference can be changed by assignment using the set
command without call global variables. Variable can be assigned to any
valid global name (existing or not) and empty string. On assignment MiniM
check syntax and if value is not valid global name, process generate an error
<SYNTAX>. For example:

TEMP>s $r="^aa"

TEMP>w $r

^aa

TEMP>s $r="^bb(123)"

TEMP>w $r

7.12. $STACK 267

^bb(123)

TEMP>s $r=""

TEMP>w $r

TEMP>

If one of functions $data(), $order(), $query() or $increment() call global
variable with database name specification, naked reference store database
name too, otherwise not. Examples:

TEMP>w $d(^|"TEMP"|aa)

0

TEMP>w $r

^|"TEMP"|aa

TEMP>w $d(^aa)

0

TEMP>w $r

^aa

TEMP>

If process changes current database, value of named indicator automat-
ically clears. If new database is the same as old, nothing to do and naked
indicator does not changes.

Function $data() always changes value of naked indicator, even if specified
global name does not contain data or subscripts with data and function
returns 0.

Functions $order() and $query() if next global variable exists, changes
value of naked indicator to next found global name, otherwise changes naked
indicator to start global name.

Function $increment() with global name, if executes successfully, always
changes value of naked indicator.

Since version 1.31 variable $reference can be newed and newed with as-
signment. On returning execution control by the stack value of $reference
can be changed indirectly.

7.12 $STACK

Returns current execution stack level.

268 CHAPTER 7. SYSTEM VARIABLES

Syntax

$STACK

$ST

Definition

System variable $stack returns number of stack level for current execution
context. Stack levels counts from 0 (top level). Each call of $$ function, do
procedure or xecute line of code automatically creates new stack level and
value of $stack is incremented by one. On stack level leaving value of $stack
is decremented by one.

Value of system variable $stack cannot be assigned by the set comand.

Unlike of system variable $estack, system variable $stack cannot be zeroed
by the new command.

7.13 $STORAGE

Returns value of available local storage in bytes.

Syntax

$STORAGE

$S

Definition

System variable $storage returns value of local storage for current process
in bytes. It is memory size available to store local variables. Initial value
of $storage is defined in configuration file minim.ini, section Process, key
Storage.

Variable returns total free bytes for local storage, but this value is not
precise to determine can be local variable stored or not, because internal
allocation algorithm allow small fragmentation of memory. And not all free
memory size can be used to store variables.

MiniM use local storage area to store local variables values, local variables
names and names synonims created by passing local variables by reference.

Value of system variable $storage cannot be changed by the set command.

7.14. $SYSTEM 269

7.14 $SYSTEM

Returns string with current MiniM instance identification.

Syntax

$SY[STEM]

Definition

System variable $system returns string with current MiniM instance iden-
tification. String consists of MDC assigned number, current computer name
and MiniM instance name delimited by comma. Instance name is specified
in configuration file minim.ini and still unchanged until current instance is
run. If on the same computer was installed several MiniM instances, it is
required to have different instance names. MDC assigned number of MiniM
and MiniMono is 52 and counts unique from whithin all MUMPS implemen-
tations.

Examples:

TEMP>w $system

52,AUGUST,MINIM00

TEMP>w $sy

52,AUGUST,MINIM00

MiniMono difference

MiniM Embedded Edition always use instance name ”MINIMONO” and
$system variable returns MDC assigned number, computer name and ”MIN-
IMONO” string.

7.15 $TEST

Returns the truth value resulting from the last if command or command
using the time-out option.

Syntax

$TEST

$T

Definition

270 CHAPTER 7. SYSTEM VARIABLES

System variable $test returns current the truth value resulting from the
last if command or command using the time-out option.

The read command with timeout sets value of the $test variable into 1
if reading was ended before timeout expired. If read terminates by timeout
expiration, the $test variable sets into 0. The read command without timeout
does not change value of the $test variable.

The lock command with timeout sets value of the $test variable into 1
if locking was ended before timeout expired. If lock terminates by timeout
expiration, the $test variable sets into 0. The lock command without timeout
does not change value of the $test variable.

The open command with timeout sets value of the $test variable into 1
if opening was ended before timeout expired. If open terminates by timeout
expiration, the $test variable sets into 0. The open command without timeout
does not change value of the $test variable.

The open command sets value of the $test variable into 1 if child process
was run successfully, otherwise sets to 0. The job command without timeout
does not change value of the $test variable.

The use command for TCP device with /ATO option sets the $test vari-
able into 1 if external connection has been made within timeout. This is
MiniM additional behavior and does not inluded into MUMPS standard.

The if command with argument sets value of the $test variable into 1 if
expression of argument evaluates as nonzero, otherwise sets to 0. Argument-
less form of the if command check the value of current $test value and does
not change value of $test.

Value of the $test variable is used by the argumentless if command and
by else command. The else command continues execution of following com-
mands in line if value of $test is 0.

System variable $test cannot be changed otherwise or assigned by the set
command.

Commands without timeouts does not change value of the $test variable.
And, value of the $test variable does not changed by postconditional expres-
sion evaliating.

Values of the $test variable are stacked and protected by changing if user
function is called ($$ context) and in context of argumentless do command.
In context of xecute command execution and in context of argumented do
command value of the $test variable is not stacked and does not protected,
can be changed at the next stack level. Examples how works stack protection
of system variable $test using routine::

7.15. $TEST 271

run()

n tmp

w "argumentless do",!

i 1 w $t,! d w $t,!

. i 0

w "do with argument",!

i 1 w $t,! d proc w $t,!

w "xecute",!

i 1 w $t,! x "i 0" w $t,!

w "function",!

i 1 w $t,! s tmp=$$func() w $t,!

q

proc

i 0

q

func()

i 0

q 1

On execution we got result:

argumentless do

1

1

do with argument

1

0

xecute

1

0

function

1

1

On process start value of $test is 0.

Value of the $test variable cannot be other than 0 or 1.

Since version 1.31 MiniM support stacking of the $test variable by the
NEW command, and NEW command can assign value of $test in new with
assignment case.

272 CHAPTER 7. SYSTEM VARIABLES

7.16 $TLEVEL

Returns current transaction level.

Syntax

$TLEVEL

$TL

Definition

System variable $tlevel returns value of current transaction context. This
variable cannot be assigned by the set command. Value of variable incre-
ments by one on each tstart command, decrements by one on each tcommit
command and sets to 0 on trollback command. On process start transaction
level is 0 and process is outside of transaction.

Examples:

TEMP>w $tl,! ts w $tl,! ts w $tl,! tc w $tl,! tc w $tl,!

0

1

2

1

0

TEMP>w $tl,! ts ts w $tl,! tro w $tl,!

0

2

0

7.17 $X

Returns or changes horizontal position of the caret.

Syntax

$X

Definition

System variable $x returns or changes with assignment horizontal position
of caret.

This system variable applies only to current device and each device have
owned $x value.

7.18. $Y 273

System variable $x by default is terminal-oriented and intended to sup-
port console and telnet devices. For other device types this value is type-
dependent and in most cases return 0 value.

System variable $x counts from 0 and increase from left to right.

Console device (|CON|)

On evaluating value of the $x variable process calls Windows console.

On assignment value of the $x variable process calls Windows console too
to change current caret position.

Telnet device (|TNT|)

On evaluating value of the $x variable process returns internal counted
value. Value counts on read, write and zwrite commands execution.

On assignment value of the $x variable device sends special telnet escape
sequence to client and changes internal $x value. MiniM suppose than telnet
client change current caret position correctly.

Caution! When executed command

write *char

devices does not evaluate current $x position changes and after this command
process does not guarantee $x value correctness.

7.18 $Y

Returns or changes vertical position of the caret.

Syntax

$Y

Definition

System variable $y returns or changes with assignment vertical position
of caret.

This system variable applies only to current device and each device have
owned $y value.

System variable $y by default is terminal-oriented and intended to sup-
port console and telnet devices. For other device types this value is type-
dependent and in most cases return 0 value.

274 CHAPTER 7. SYSTEM VARIABLES

System variable $y counts from 0 and increase from left to right.

Console device (|CON|)

On evaluating value of the $y variable process calls Windows console.

On assignment value of the $y variable process calls Windows console too
to change current caret position.

Telnet device (|TNT|)

On evaluating value of the $y variable process returns internal counted
value. Value counts on read, write and zwrite commands execution.

On assignment value of the $y variable device sends special telnet escape
sequence to client and changes internal $y value. MiniM suppose than telnet
client change current caret position correctly.

Caution! When executed command

write *char

devices does not evaluate current $y position changes and after this command
process does not guarantee $y value correctness.

Chapter 8

System Z - Variables

8.1 $ZCHILD

Returns number of last created by job command child process.

Syntax

$ZCHILD

Definition

System variable $zchild returns number of last child process created by
the job command. This value of variable still unchanged until next child
process is created even if child process terminates. If the job command failed
to create child process, variable $zchild returns an empty string.

Example:

s childexist=$d(^$JOB($zchild))

8.2 $ZEOF

Returns indicator end of input data.

Syntax

$ZEOF

Definition

System variable $zeof returns indicator end of input data reached on read
data from device. If current device id a device with types FILE, PIPE, TCP,

275

276 CHAPTER 8. SYSTEM Z - VARIABLES

STORE or ZDEVICE implemented, this system variable returns value 1 if
end of data reached or 0.

If device does not support end-of-file detection, variable $zeof always re-
turns value 0.

Indicator is active if end-of-file detection mode is on for current device.
By default end-of-file detection mode is off end if device detect end-of-file of
input data, device generate an error <ENDOFFILE>.

End-of-file detection can be enabled in configuration file minim.ini, sec-
tion Process, key TrapOnEof. If this value is 1, process generate an error
<ENDOFFILE>, if value is 0, error is not generated and $zeof return indi-
cator.

Current end-of-file detection mode can be changed using function $view(”proc”,5).

8.3 $ZERROR

Returns text of last error occured.

Syntax

$ZE[RROR]

Definition

System variable $zerror returns text of last error occured with possible
additional information about place or other error details. Error text starts
with error name embraced with angle brackets. For example:

TEMP>w abc

<UNDEFINED>

TEMP>w $ze

<UNDEFINED>

Full supported errors list is listed in current document, chapter Errors
List.

Unlike of system variable $ecode, value or system variable $zerror have
no standard meaning and return not last errors list, but only one last error
occured in explaned format with short name and possible additional infor-
mation.

System variable $zerror may be assigned by the set command. For exam-
ple:

8.4. $ZGUID 277

TEMP>w abc

<UNDEFINED>

TEMP>w $ze

<UNDEFINED>

TEMP>s $ze=""

TEMP>w $ze

TEMP>s $ze="789"

TEMP>w $ze

789

If system variable $zerror have been assigned by the set command, MiniM
does not check value assigned.

8.4 $ZGUID

Generate and returns GUID (global unique identifier).

Syntax

$ZGUID

Definition

On each call system variable $zguid generate new and return global unique
identifier. Return value is a GUID in the most common used format in stan-
dard hexadecimal representation. Uniqueness of new GUID value guaranteed
by Windows operating system.

In the Linux version MiniM uses pseudo-random number generator to
generate GUID value.

In the FreeBSD version MiniM uses FreeBSD builtin GUID generator to
generate GUID value.

Example:

TEMP>w $zguid

C4DC06D9-F40D-4445-ADE6-BABC87DE25C1

278 CHAPTER 8. SYSTEM Z - VARIABLES

8.5 $ZHOROLOG

Returns second elapsed from MiniM server start.

Syntax

$ZHOROLOG $ZH

Definition

System variable $zhorolog returns seconds elapsed from MiniM server
start. Seconds is returned with microseconds precision. MiniM use Win-
dows high resolution timer to measure time elapsed. This variable precision
is enough to measure execution time of any command.

Examples:

USER>s a=$zh s b=123 s c=$zh

USER>w

a="20.931194"

b=123

c="20.931259"

8.6 $ZNAME

Returns currently executed routine name.

Syntax

$ZNAME

Definition

System variable $zname returns name of currently executed routine or an
empty string if current routine context does not exists. This system variable
return is equal of function $t(+0) return. If code is executed on top level
in console or telnet mode, it have not routine context and variable $zname
returns an empty string.

Example:

s curroutine=$zname

8.7. $ZNSPACE 279

8.7 $ZNSPACE

Returns current database name.

Syntax

$ZNSPACE

Definition

System variable $znspace returns name of current database name. Database
name returned in upper case. Value of $znspace variable automatically
changes on current database changing and cannot be assigned by the set
command.

Example:

TEMP>w $znspace

TEMP

8.8 $ZPARENT

Returns number of parent process, who did run this process.

Syntax

$ZPARENT

Definition

System variable $zparent returns number of process who run this process.
If current process was run not by job command, variable returns an empty
string. Parent job number still unchanged all time even if parent process
terminates.

Examples:

s parentexist=$d(^$JOB($zparent))

MiniMono difference

MiniM Embedded Edition in the $zparent value always returns 0.

280 CHAPTER 8. SYSTEM Z - VARIABLES

8.9 $ZPI

Returns value of π constant.

Syntax

$ZPI

Definition

System variable $zpi returns value of π constant.

Example:

TEMP>w $zpi

3.14159265358979

8.10 $ZREFERENCE

Returns last global reference.

Syntax

$ZREFERENCE

$ZR

Definition

System variable $zreference contains last global reference process made.
This value also have name naked indicator value or naked reference. On
process start last global reference is not defined and value of $zreference
variable is an empty string.

Naked indicator changes on global variable evaluation, assignment, killing
and using functions $data(), $order(), $query(), $increment() if functions call
global variable.

System variable $zreference can be changed by assignment using the set
command without call global variables. Variable can be assigned to any
valid global name (existing or not) and empty string. On assignment MiniM
check syntax and if value is not valid global name, process generate an error
<SYNTAX>. For example:

TEMP>s $zr="^aa"

TEMP>w $zr

8.10. $ZREFERENCE 281

^aa

TEMP>s $zr="^bb(123)"

TEMP>w $zr

^bb(123)

TEMP>s $zr=""

TEMP>w $zr

TEMP>

If one of functions $data(), $order(), $query() or $increment() call global
variable with database name specification, naked reference store database
name too, otherwise not. Examples:

TEMP>w $d(^|"TEMP"|aa)

0

TEMP>w $zr

^|"TEMP"|aa

TEMP>w $d(^aa)

0

TEMP>w $zr

^aa

TEMP>

If process changes current database, value of named indicator automat-
ically clears. If new database is the same as old, nothing to do and naked
indicator does not changes.

Function $data() always changes value of naked indicator, even if specified
global name does not contain data or subscripts with data and function
returns 0.

Functions $order() and $query() if next global variable exists, changes
value of naked indicator to next found global name, otherwise changes naked
indicator to start global name.

Function $increment() with global name, if executes successfully, always
changes value of naked indicator.

282 CHAPTER 8. SYSTEM Z - VARIABLES

8.11 $ZTIMESTAMP

Returns current date and time in GMT with milliseconds.

Syntax

$ZTIMESTAMP

$ZTS

Definition

System variable $ztimestamp returns current date and time in GMT (un-
like of $horolog variable) with precision up to milliseconds.

Variable format:

number of days since Dec 31, 1840

comma (,)

number of seconds from day start

dot (.)

number of milliseconds from second start

On formatting milliseconds MiniM align and pad if need by leading mil-
liseconds zeroes. Leading zeroes are present, and terminating zeroes can be
omitted, for example:

Milliseconds Milliseconds formatted
1 .001
10 .01
100 .1

Caution: every call to this variable can return different values.

Examples:

TEMP>w $zts

60986,43395.485

TEMP>w $h

60986,54199

8.12 $ZTIMEZONE

Return information about current time zone.

8.13. $ZTRAP 283

Syntax

$ZTIMEZONE

$ZTZ

Definition

System variable $ztimezone returns information about currently used time
zone. It is time offset from GMT (Greenwich Mean Time) in minutes. Time
zone on the east of GMT are specified as negative numbers. For example, in
Moscow time zone is 3 hours or -180 minutes.

Variable $ztimezone cannot be changed by the set command.

Examples:

TEMP>w $ztimezone

-180

TEMP>w $ztz

-180

8.13 $ZTRAP

Returns value of last assigned error handler.

Syntax

$ZTRAP $ZT

Definition

System variable $ztrap returns value of last assigned extended error han-
dler. This variable have the same value for all stack levels and stores last
assigned value.

Error handler assigned using $ztrap is not special second error handling
mechanism and indended for close as possible compatibility with most widely
used MUMPS implementations. This aeeror handler is pseudohandler ans
really is only wrapper to standard error handling mechanism. If variable is
$ztrap assigned, this is equal assigning appropriate values to system variables
$estack and $etrap. Error handler assigned using $ztrap is handled by goto
command. On $ztrap MiniM create automatically assignment to variables
$estack and $etrap and if need use new command and this action is dependent
of new $ztrap value.

284 CHAPTER 8. SYSTEM Z - VARIABLES

Value of $ztrap must be a label reference to use by goto command or label
reference prefixed by ”*” symbol.

If value of $ztrap contains only label reference, this assignment is equal
of code execution:

new $estack

new $etrap

set $etrap="g:’$es "_$ztrap

This conforms to stack unrolling or error until stack level when assignment
was made and execution of goto command to specified label.

If calue of $ztrap contains label reference prefixed by ”*” symbol, this
assignment is equal of code execution:

set $etrap="g "_$e($ztrap,2,$l($ztrap))

This conforms execution goto command only to specified label indepen-
dent of stack level when error occurs.

Examples:

USER>s $zt="err^errhandler"

USER>w $et

g:’$es err^errhandler

USER>s $zt="*err^errhandler"

USER>w $et

g err^errhandler

If system variable $ztrap is assigned to any value which MiniM cannot
classify as possible, process generate an error <SYNTAX>.

8.14 $ZVERSION

Returns information about currently used MiniM Database Server version.

Syntax

$ZV[ERSION]

8.14. $ZVERSION 285

Definition

System variable $zversion returns string with information about currently
used MiniM Database Server version. Version information have not prede-
fined format. Not it includes string ”MiniM”, version number and build
date.

Example:

TEMP>w $zv

MiniM for Windows 32 bit

MiniMono difference

In MiniM Embedded Edition variable $zversion returns string with the
MiniMono substring:

MiniMono for Windows ...

MiniM x64 difference

In MiniM x64 variable $zversion returns string with the architecture im-
plementation of MiniM:

MiniM for Windows x64 ...

286 CHAPTER 8. SYSTEM Z - VARIABLES

Chapter 9

Structured System Variables

9.1 $DEVICE

Structured system variable ˆ$DEVICE exposes information about devices
opened by current process.

Syntax

ˆ$D[EVICE](deviceid)

Definition

First subscript of variable deviceid is a device identification string. De-
vices are identified by string prefixed by device type with following identi-
fication symbols dependent of device type. Commands open, use, and close
use device identification strings as an argument.

Variable ˆ$DEVICE supports only one subscript. If process success-
fully open device, this device identification string automatically is present
in ˆ$DEVICE.

MiniM Database Server supports ˆ$DEVICE variable as first argument
of functions $data(), $order() and $query().

ˆ$DEVICE as a $data() argument

Function $data() with a ˆ$DEVICE as an argument allow to determine
is this device already opened by current process or not. If device is opened
and available, dunction return value 1, otherwise 0.

TEMP>w $d(^$D($io))

1

TEMP>w $d(^$D(" "))

287

288 CHAPTER 9. STRUCTURED SYSTEM VARIABLES

0

TEMP>o "|NULL|"

TEMP>w $d(^$D("|NULL|"))

1

ˆ$DEVICE as an $order() argument

Function $order() with a ˆ$DEVICE as an argument allow to enumerate
device identification strings of devices currently opened by process. Function
can be used with forward and backward enumerate direction. If function
does not detect next device name it returns an empty string.

TEMP>s dev="|NULL|" o dev

TEMP>s dev="" f s dev=$o(^$D(dev)) q:dev="" w dev,!

|CON|

|NULL|

ˆ$DEVICE as a $query() argument

Function $query() with a ˆ$DEVICE as an argument allow to enumerate
names of ˆ$DEVICE with device name as first subscript. Function can be
used with forward and backward enumerate direction. If function does not
detect next device name it returns an empty string.

TEMP>s dev="|NULL|" o dev

TEMP>s n=$na(^$d("")) f s n=$q(@n) q:n="" w n,!

^$DEVICE("|CON|")

^$DEVICE("|NULL|")

MiniM does not support read value, assign value and kill command with
ˆ$DEVICE variable.

9.2 $GLOBAL

Structured system variable ˆ$GLOBAL exposes information about globals
with data.

Syntax

9.2. $GLOBAL 289

ˆ$G[LOBAL](globalname)

Definition

globalname - global name. Structured system variable ˆ$GLOBAL supports
only one subscript level.

First subscript of ˆ$GLOBAL must be a global variable name. It does
not supported global variable name with subscripts, in this case process gen-
erate an error <SSVNSUBSCRIPT>. Global name can be specified with
or without database name using extended syntax. If global name specified
without database name, it is call to current database globals list, otherwise it
is call to specified database globals list. If specified database does not exists,
all calls generate an error <NAMESPACE>.

There is possible to use structured system variable ˆ$GLOBAL as an ar-
gument of functions $data(), $order(), $query() and as argument of command
kill.

ˆ$GLOBAL as an argument of $data() function

Function $data() with a structured system variable ˆ$GLOBAL as an
argument return information about exist this global or not. For existing
globals function returns value 1, otherwise 0. MiniM suppose global is ex-
isting global if at least root global name or one subscripted name have any
data, otherwise global does not exists. For example:

TEMP>w $d(^$G("^a"))

0

TEMP>w $d(^$G("^|""aa""|a"))

<NAMESPACE>

TEMP>w $d(^$G("^a(123)"))

<SSVNSUBSCRIPT>

Structured system variable is used in most cases as globals directory list.

ˆ$GLOBAL as an argument of functions $order() and $query()

Functions $order() and $query() allow to enumerate available globals.
Functions can be used with specifying enumerate direction - forward or back-
ward. If next global name does not found, functions returns an empty strings.
To get first or last global name need to be used an empty sring as start value.

Function $order() returns next global name, and function $query() re-
turns name of ˆ$GLOBAL with global name as first subscript.

290 CHAPTER 9. STRUCTURED SYSTEM VARIABLES

If functions get start values with database name, functions search next
global name in specified database, otherwise functions search in current
database.

MiniM Database Server supports globals name mappint using the fol-
lowint rules:

1) Globals with names starts with ”%” symbol are physically stored in
database ”%SYS” and are accessible by all processes from any database.

2) Globals with names starts with ”mtemp” string are physically stored
in database ”TEMP” and are accessible by all processes from any database.

On enumerating globals names using ˆ$GLOBAL it is used this conven-
tions and functions $order() and $query() can return not only globals in
current database.

If function $query() accept global name with database name specified,
function returns next global with database name too, otherwise without
database name. Database name is returned in upper case and embraces
with || symbols even if source database was specified in lower case and was
embraced with [] symbols.

If functions $order() and $query() got global name with subscripts or
invalid global name, it generate an error <SSVNSUBSCRIPT>.

ˆ$GLOBAL as a kill command argument

Structured system variable ˆ$GLOBAL can be used as kill command ar-
gument. In this case command remove entire global specified in ˆ$GLOBAL
first subscript, for example:

USER>w ^a

a

USER>k ^$G("^a")

USER>w ^a

<UNDEFINED>

In this case kill with a ˆ$GLOBAL as an argument is equal of kill com-
mand with a first subscript of ˆ$GLOBAL as an argument.

kill ^a

9.3. $JOB 291

9.3 $JOB

Structured system variable ˆ$JOB exposes information about available jobs
in current MiniM instance.

Syntax

ˆ$J[OB](jobnumber)

Definition

First subscript of ˆ$JOB is a jobnumber, a MiniM job identifier. Values are
the same as returns system variables $job, $zparent and $zchild. Structured
system variable ˆ$JOB supports only one subscripts level.

There is possible to use structured system variable ˆ$JOB as an argument
of functions $data(), $order(), $query(), $get() and as argument of command
kill.

ˆ$JOB as a $data() function argument

Function $data() with a structured system variable ˆ$JOB as an argument
return information about exist this job or not. For existing jobs function
returns 1 otherwise 0.

TEMP>w $d(^$j($j))

1

TEMP>w $d(^$j("fdf"))

0

ˆ$JOB as an argument of $order() function

Function $order() with a structured system variable ˆ$JOB as an argu-
ment allow to enumerate available jobs of this MiniM instance. Function
can be used with specifying enumerate direction - forward or backward. If
next job number does not exists, function return an empty string. To get job
number with smallest or biggest number need to be used an empty string as
start job number.

TEMP>s j="" f s j=$o(^$j(j)) q:j="" w j,!

1660

1250

ˆ$JOB as an argument of $query() function

292 CHAPTER 9. STRUCTURED SYSTEM VARIABLES

Function $query() with a ˆ$JOB as an argument allow to enumerate
names of ˆ$JOB variable with job numbers as first subscript. Function
$query() with a ˆ$JOB can be used with a direction specified - forward or
backward.

TEMP>s n=$na(^$j("")) f s n=$q(@n) q:n="" w n,!

^$JOB("1608")

ˆ$JOB as a kill command argument

MiniM Database Server allow to use a structured system variable ˆ$JOB
as an argument of kill command. In this case first ˆ$JOB subscript must
be a job number to terminate. It is not allowed to kill self, this generate an
error <JOB>.

Process to be terminated got signal to terminate, execute halt command
and exits.

Read data from ˆ$JOB variable

MiniM Database Server allow to read from ˆ$JOB variable. If first sub-
script is a job number of existing job, value of ˆ$JOB(pid) return 4 process
internals as list in $listbuild() format. Order of elements:

1 Current database. ($znspace)
2 Current routine. ($zname)
3 Current device. ($principal)
4 Current naked indicator. ($zreference)

Some elements of this list can be undefined, and it is need to use $listget()
function.

If evaluates value of ˆ$JOB(pid) for unexisting job, it generate an error
<SSVN VALUE>.

If function $get() is used to evaluate value of ˆ$JOB(pid), function return
specified default value or an empty string if this process does not exists.

9.4 $LOCK

Structured system variable ˆ$LOCK exposes information about available
locks in current MiniM instance. Variable allow to enumerate available locks,
return information about process owned and lock count and remove locking.

9.4. $LOCK 293

Syntax

ˆ$L[OCK](lockname)

Definition

lockname - expression evaluated as a string and contain a local or global
variable locked. Variable name can be with subscripts and global names with
database name.

For global variable it is a rule for database name - if database name of
global is omitted or it is an empty string, it equal current database usage
and database names are case insensitive. Functions which can return global
name including functions with ˆ$LOCK with an argument can return global
name with database, and in this case database name returns in upper case
and embraced into || symbols even if source database was specified in lower
case and embraced into [] symbols.

There is possible to use structured system variable ˆ$LOCK as an argu-
ment of functions $get(), $data(), $order(), $query() and as a kill command
argument.

ˆ$L[OCK] as an argument of $data() function

Function $data() with a structured system variable ˆ$LOCK as an ar-
gument return information about exist this lock or not. For existing locks
function returns 1 otherwise 0. Lock exist if this variable is locked by any
process.

Function $data() with a structured system variable ˆ$LOCK as an ar-
gument return full indicator - is specified name is locked and is locked sub-
scripted name or not.

TEMP>l

TEMP>w $d(^$l("^a"))

0

TEMP>l +^a

TEMP>w $d(^$l("^a"))

1

TEMP>l +^a(1)

TEMP>w $d(^$l("^a"))

11

TEMP>l -^a

294 CHAPTER 9. STRUCTURED SYSTEM VARIABLES

TEMP>w $d(^$l("^a"))

10

ˆ$L[OCK] as an argument of $order() function

Function $order() with a structured system variable ˆ$LOCK as an argu-
ment allow to enumerate currently locked by any process variable names in
current MiniM instance. Variable names are returned as is, and global vari-
ables are returned using extended syntax, with database name specification.
Local variable names are sorted prior by global names.

TEMP>l +a,+^a,+b,+^b

TEMP>s n="" f s n=$o(^$l(n)) q:n="" w n,!

a

b

^|"TEMP"|a

^|"TEMP"|b

Function $order() with a structured system variable ˆ$LOCK as an argu-
ment allow to use enumerate direction - forward or backward. And, if next
locked name does not exists, function returns an empty string.

TEMP>s n="" f s n=$o(^$l(n),-1) q:n="" w n,!

^|"TEMP"|b

^|"TEMP"|a

b

a

ˆ$L[OCK] as an argument of $query() function

Function $query() with a structured system variable ˆ$LOCK as an ar-
gument allow to enumerate all available ˆ$LOCK variable names with locked
variable names as first subscript. Function $query() with a structured system
variable ˆ$LOCK as an argument allow to use enumerate direction - forward
or backward. And, if next locked name does not exists, function returns an
empty string.

TEMP>s n=$na(^$l("")) f s n=$q(@n) q:n="" w n,!

^$LOCK("a")

^$LOCK("b")

9.4. $LOCK 295

^$LOCK("^|""TEMP""|a")

^$LOCK("^|""TEMP""|b")

TEMP>s n=$na(^$l("")) f s n=$q(@n,-1) q:n="" w n,!

^$LOCK("^|""TEMP""|b")

^$LOCK("^|""TEMP""|a")

^$LOCK("b")

^$LOCK("a")

ˆ$L[OCK] as an argument of $get() function and evaluating value

MiniM Database Server allow to use ˆ$LOCK variable as an argument of
$get() function and allow evaluating value of ˆ$LOCK variable with locked
variable name as first subscript. This operation returns a process number
owned by lock and lock count made delimited by colon.

TEMP>l +a w ^$LOCK("a")

1660:1

TEMP>l +a,+a

TEMP>w ^$LOCK("a")

1660:3

If specified lock name does not exist, function $get() return specified
default value or an empty string.

TEMP>l

TEMP>w ^$LOCK("abcd")

<UNDEFINED>

TEMP>w $g(^$LOCK("abcd"),"undef")

undef

ˆ$L[OCK] as a kill command argument

MiniM Database Server allow to use ˆ$LOCK variable as a kill command
argument. In this case process removes lock on specified in first subscript
variable. Lock is removed even id this lock is made by other process. For
example:

k ^$LOCK("a")

296 CHAPTER 9. STRUCTURED SYSTEM VARIABLES

9.5 $ROUTINE

Structured system variable ˆ$ROUTINE exposes information about available
routines in the current database.

Syntax

ˆ$R[OUTINE](routinename)

Definition

routinename - expression evaluated as a string and must be a routine name
without circumflex (ˆ). Structrured system variable ˆ$ROUTINE supports
only one subscripts level.

ˆ$ROUTINE as an argument of $data() function

Function $data() with a structured system variable ˆ$ROUTINE as an
argument return information about exist this routine in the database or not.
For existing routines function returns value 1, otherwise returns value 0. For
example:

$d(^$r("alpha"))

tests is present routine alpha in the database or not.

ˆ$ROUTINE as an argument of $order() and $query() functions

Functions $order() and $query() allow to enumerate routines available in
the database. Functions can use enumerating directions - forward or back-
ward. If next routine name does not exists, functions return an empty strings.
To get first or last routine name need to be specified empty string as first
subscript of ˆ$ROUTINE.

Functions enumerate only routines from current database, and does not
use routines from the ”%sys” database even if they are accessible to execute.

To enumerate system routines process must change current database to
the ”%sys” database.

ˆ$ROUTINE as an argument of kill command

Command kill with a structured system variable ˆ$ROUTINE as an ar-
gument remove source code of routine specified in forst subscript. Routine’s
bytecode still exists and can be used to execute routine later. For example:

kill ^$r("alpha")

it remove source code of routine alpha.

Chapter 10

Device Parameters

10.1 COM

Devices with the |COM| type are supported only in the Windows editions of
the MiniM Database Server and MiniMono.

The |COM| device used to interoperate with computer’s serial COM
ports, control port state and transfer data. To read from and write to port
used read and write commands. To control state - use command with pa-
rameters and for special cases system function $view(”dev”).

The |COM| device name need to be in the form ”|COM|N”, where N is
a serial port number. For example, to interoperate with port COM2 need to
be used device name

"|COM|2"

The port number must be specified withot leading zeroes.

The Windows operating system allow to processes operate with the same
port concurrently with several exceptions, dependent of hardware. For ex-
ample, modem as Internet provider or mouse.

With opening using open command or with use command can be used
the following device parameters. With close command this parameters are
ignored.

|COM| device parameters

Parameter /MODE=expr

The /MODE parameter assign device mode. The expr expression eval-
uates as string and used as a symbolic flags sequence. Used the following
flags:

297

298 CHAPTER 10. DEVICE PARAMETERS

r or R Enable read from device.
w or W Enable write to device.
t or T Enable text mode for read and write.
b or B Enable binary mode for read and write.
other Ignored.

By default device use mode as ”rt”, read is enabled, write is disabled and
enabled text mode.

If text or binary mode does not specified, it is used text mode by default.
If /MODE parameter is specified without read or write flags, both commands
will generate <READ> and <WRITE> errors correspondingly.

When the text mode is enabled, then the line feed format

write !

outputs to device symbols $c(13,10), and if binary mode is enabled, it outputs
symbol $c(10) only.

The /MODE parameter can be specified by position in first position or
by name in any position.

Parameter /TERM=expr

The /TERM parameter defined the read terminator for binary mode.
The expr expression evaluates as string and used as a terminator later. On
read string terminator does not included into read result.

For text mode the read terminator is ignored and used special symbol
$c(10). If before this symbol present symbol $c(13), it removes from result
string too.

By default the terminator value is empty string.

The /TERM parameter can be specified by position in second position
or by name in any position.

Other specified parameters can be used only in named mode, not by
position.

Parameter /BAUD=expr

The expr evaluates as an integer. Specifies the baud rate at which the
communications device operates. This value can be an actual baud rate value,
or one of the following baud rate indexes: 110, 300, 600, 1200, 2400, 4800,
9600, 14400, 19200, 38400, 56000, 57600, 115200, 128000, 256000. For values
less then 110 and greater than 256000 generates <DEVPARAM> error.

10.1. COM 299

Parameter /PARITYCHECK=expr

Specifies whether parity checking is enabled. If expr evaluates as nonzero,
parity checking is performed and errors are reported.

Parameter /CTS=expr

Specifies whether the CTS (clear-to-send) signal is monitored for output
flow control. If expr evaluates as nonzero and CTS is turned off, output is
suspended until CTS is sent again.

Parameter /DSR=expr

Specifies whether the DSR (data-set-ready) signal is monitored for output
flow control. If expr evaluates as nonzero and DSR is turned off, output is
suspended until DSR is sent again.

Parameter /DSRS=expr

Specifies whether the communications driver is sensitive to the state of
the DSR signal. If expr evaluates as nonzero, the driver ignores any bytes
received, unless the DSR modem input line is high.

Parameter /TXC=expr

Specifies whether transmission stops when the input buffer is full and the
driver has transmitted the XoffChar character. If expr evaluates as nonzero,
transmission continues after the input buffer has come within XoffLim bytes
of being full and the driver has transmitted the XoffChar character to stop
receiving bytes. If expr evaluates as zero, transmission does not continue
until the input buffer is within XonLim bytes of being empty and the driver
has transmitted the XonChar character to resume reception.

Parameter /ABORTONERROR=expr

Specifies whether read and write operations are terminated if an error
occurs. If expr evaluates as nonzero, the driver terminates all read and write
operations with an error status if an error occurs. The driver will not accept
any further communications operations until the error reason removed and
$zb system variable called.

Parameter /OUTX=expr

Specifies whether XON/XOFF flow control is used during transmission.
If expr evaluates as nonzero, transmission stops when the XoffChar character
is received and starts again when the XonChar character is received.

Parameter /INX=expr

300 CHAPTER 10. DEVICE PARAMETERS

Specifies whether XON/XOFF flow control is used during reception. If
expr evaluates as nonzero, the XoffChar character is sent when the input
buffer comes within XoffLim bytes of being full, and the XonChar character
is sent when the input buffer comes within XonLim bytes of being empty.

Parameter /NULL=expr

Specifies whether null bytes are discarded. If expr evaluates as nonzero,
null bytes are discarded when received.

Parameter /DTR=expr

Specifies the DTR (data-terminal-ready) flow control. The expr value can
be one of the following values:

0 Disables the DTR line when the device is opened
and leaves it disabled.

1 Enables the DTR line when the device is opened
and leaves it on.

2 Enables DTR handshaking.

On the other expr values process generates <DEVPARAM> error.

Parameter /RTS=expr

Specifies the RTS (request-to-send) flow control. The expr value can be
one of the following values:

0 Disables the RTS line when the device is opened
and leaves it disabled.

1 Enables the RTS line when the device is opened
and leaves it on.

2 Enables RTS handshaking. The driver raises the
RTS line when the ”type-ahead” (input) buffer is
less than one-half full and lowers the RTS line
when the buffer is more than three-quarters full.

3 Specifies that the RTS line will be high if bytes are
available for transmission. After all buffered bytes
have been sent, the RTS line will be low.

By default it is used as /RTS=2. On the other expr values process gen-
erates <DEVPARAM> error.

Parameter /BYTESIZE=expr

Specifies the number of bits in the bytes transmitted and received. The

10.1. COM 301

expr value can have one of the following values: 5, 6, 7, 8. On the other expr
values process generates <DEVPARAM> error.

Parameter /PARITY=expr

Specifies the parity scheme to be used. The expr value can be one of the
following values:

0 None
1 Odd
2 Even
3 Mark
4 Space

On the other expr values process generates <DEVPARAM> error.

Parameter /STOPBITS=expr

Specifies the number of stop bits to be used. The expr value can be one
of the following values:

1.0 1 stop bit
1.5 1.5 stop bits
2.0 2 stop bits

On the other expr values process generates <DEVPARAM> error.

The use of 5 data bits with 2 stop bits is an invalid combination, as is 6,
7, or 8 data bits with 1.5 stop bits.

Parameter /XONLIM=expr

Specifies the minimum number of bytes allowed in the input buffer before
the XON character is sent. Maximum value of expr is 64K.

Parameter /XOFFLIM=expr

Specifies the maximum number of bytes allowed in the input buffer before
the XOFF character is sent. The maximum number of bytes allowed is
calculated by subtracting this value from the size, in bytes, of the input
buffer. Maximum value of expr is 64K.

Parameter /XONCHAR=expr

Specifies the value of the XON character for both transmission and re-
ception. The expr value evaluates as a string and used only first symbol. If
value is empty string, process generates a <DEVPARAM> error.

302 CHAPTER 10. DEVICE PARAMETERS

Parameter /XOFFCHAR=expr

Specifies the value of the XOFF character for both transmission and re-
ception. The expr value evaluates as a string and used only first symbol. If
value is empty string, process generates a <DEVPARAM> error.

Parameter /ERRORCHAR=expr

Specifies the value of the character used to replace bytes received with a
parity error. The expr value evaluates as a string and used only first symbol.
If value is empty string, process generates a <DEVPARAM> error.

Parameter /EOFCHAR=expr

Specifies the value of the character used to signal the end of data. The
expr value evaluates as a string and used only first symbol. If value is empty
string, it is used character $c(0).

Parameter /EVTCHAR=expr

Specifies the value of the character used to signal an event. The expr
value evaluates as a string and used only first symbol. If value is empty
string, process generates a <DEVPARAM> error.

System variable $za value

If current device is a |COM| device, system variable $za returns set of bit
of port event’s masks within one integer. Masks are single bits in separate
positions of binary representation of integer. And common integer value is
a sum of all available masks. To select special bit we can use arithmetic
operators \ and #. For example, let it be sum of two numbers: #10+#20
(16+32). And, to determine separate bits we can use operators (here use
hexadecimal numbers):

USER>w (#10+#20\#10#2)

1

USER>w (#10+#20\#20#2)

1

USER>w (#10+#20\#40#2)

0

USER>w (#10+#20\#8#2)

0

Here was determined that inside integer 48 are present masks #10 and
#20, but are not presents masks #40 and #8.

Events mask list:

10.1. COM 303

#0040 A break was detected on input.
#0008 The CTS (clear-to-send) signal changed state.
#0010 The DSR (data-set-ready) signal changed state.
#0080 A line-status error occurred, frame, overrun or par-

ity error.
#0100 A ring indicator was detected.
#0020 The RLSD (receive-line-signal-detect) signal

changed state.
#0001 A character was received and placed in the input

buffer.
#0002 The event character (first character of EVTCHAR

option) was received and placed in the input buffer.
#0004 The last character in the output buffer was sent.
#0800 An event of the first provider-specific type occured
#1000 An event of the second provider-specific type oc-

cured.
#0200 A printer error occured.
#0400 The receive buffer is 80 percent full.

System variable $zb value

If current device is a |COM| device, system variable $za returns set of bit
of port error’s. Error’s mask list:

#0010 The hardware detected a break condition.
#0008 The hardware detected a framing error.
#8000 The requested mode is not supported. If this bit

is present, other bits have not any meaning.
#0002 A character-buffer overrun has occurred. The next

character is lost.
#0001 An input buffer overflow has occurred. There is

either no room in the input buffer, or a character
was received after the end-of-file (EOF) character.

#0004 The hardware detected a parity error.
#0100 The application tried to transmit a character, but

the output buffer was full.

To determine what bit is present, we can use the same methods as de-
scribed in $za value unpacking. Note each call to $zb variable for |COM|
port make error mask read and clearing. Other call to $zb can return other
value.

304 CHAPTER 10. DEVICE PARAMETERS

Additional COM port control

Additionally to control COM port state MiniM implements several special
extended functions $v(”dev”,5), $v(”dev”,6) and $v(”dev”,7). See function
description in chapter about $view function.

The write # command

If the write # command applied to COM port, it is flushes input and
output buffers.

The write ?N command

If the write ?N command applied to COM device, it writes N spaces. If
specified less then 1 ot more the 32K spaces it does nothing.

For example, how to read modem identification strings if modem is con-
nected to COM2 port:

USER>k s dev="|COM|2" o dev

USER>u dev:(/BYTESIZE=8:/BAUD=115200:/MODE="rwt") >>

>> w "ATI3",$c(13,10),# r ans,ans,#

USER>c dev

USER>w

ans="U.S. Robotics 56K FAX EXT Rev. 11.15.19"

dev="|COM|2"

Here read and write operations are terminated by flush buffers action.
Here set up one of standard speed, byte size as 8 bits and text mode to
interact. Next the read commands read acho and identification string.

10.2 CON

The CON device is created automatically on process start in console mode.
This mode is used by default if it is not telnet-process, jobbed process, no
any redirection of input and output is used and no specified STD option. For
example, if we run MiniM process directly from cmd utility or from Windows
Explorer:

minim.exe

in this case MiniM process use CON device as principal and current:

10.2. CON 305

W:\MiniM\bin>minim.exe

TEMP>w $p

|CON|

TEMP>w $io

|CON|

TEMP>

This device cannot be created manually except automatically and prin-
cipal device cannot be changed to another. MiniM process in console mode
use Windows console functionality to handle input and output.

The CON device have not close command parameters (closing principal
device always ignored) and have no any open parameters (this device cannot
be opened directly).

Use command options / parameters

The CON device with use command support the following options:

/COLUMNS = expr Use specified columns for console window.
/LINES = expr Use specified lines for console window.
/ECHO = expr Use or not use echo mode for read command.
/TERM = expr Read terminator
/OEM = expr Use automatic OEM - ANSI decoding
/CTRLC = expr Trap or not on press Ctrl+C
/DELIM = expr Read string delimiters in text mode
other Ignored.

Option /COLUMNS = expr

The /COLUMNS = expr option specifies how many columns need to be
used for console window. By default is used 80 columns.

The /COLUMNS = expr option can be specified by position in first po-
sition on by name in any position.

The expr value evaluates as integer, if value is less then 1, process gener-
ates the <DEVPARAM> error.

Option /LINES = expr

The /LINES = expr option specifies how many lines need to be used for
console window. By default is used 25 lines.

The /LINES = expr option can be specified by position in 2 position or
by name in any position.

306 CHAPTER 10. DEVICE PARAMETERS

The expr value evaluates as integer, if value is less then 1, process gener-
ates the <DEVPARAM> error.

Option /ECHO = expr

The /ECHO = expr option specifies echo mode usage. By default echo
is used - read command display on the screen all entered symbols.

The expr value evaluates as an integer. If it is 0, echo mode is turned
off, otherwise on. If echo is disabled, entered symbols does not shown on the
console screen.

The /ECHO option can be specified by position in 3 position or by name
in any name.

Option /OEM = expr

The /OEM = expr option control OEM to ANSI encoding usage. By
default OEM encoding is enabled and device uses OEM codepage to represent
data in the console window (Windows behavior by default) and internal data
in ANSI encoding (Windows collation by default). The expr value evaluates
as an integer. If is it zero, encoding is disabled, otherwise enabled. The
/OEM option is supported by name only.

Examples:

use $p:/OEM=0 ; disable OEM -> ANSI encoding

use $p:/OEM=1 ; enable OEM -> ANSI encoding

Option /CTRLC = expr

The /CTRLC = expr option enable or disable <INTERRUPT> error
generation on Ctrl+C press. If expr evaluates as zero, error generation is
disabled and Ctrl+C press can be read from keyboard using read command. If
it is non zero, Ctrl+C press generates <INTERRUPT> error. The /CTRLC
= expr option can be used only by name.

Option /TERM = expr

The /TERM = expr option specifies read terminator. Read string ter-
minates if this character sequence is accepted. The terminator value does
not included into read string result. The /TERM option for console can be
specified by name only.

If expr evaluates as an empty string, terminator does not used.

In interactive mode while command enters the terminator does not forget
and used later in read string command. Top command input mode use only
carrage return as input terminator.

10.2. CON 307

Option /DELIM = expr

The /DELIM option specifies list of read string terminators. Read string
terminates if one of bytes specified in option was reached. The delimiter
character does not included into read string result. The /DELIM option can
be specified by name only.

By defaut device uses delimiters for /DELIM option like be specified with
value of $C(10,13,27).

Read terminators

In console read string terminator by default is carrage return symbol
(ENTER) and escape symbol (Esc). This terminators used if /TERM option
spesifies empty string. On the non-zero stack execution id terminator is
specified, it is used, otherwise used ENTER and Esc as symbols to end of
read string.

On top level (zero stack level) it is work internal string enter editor with
scrolling and it is form current string to read.

On read character command console device use direct console buffer read
to accept symbols.

Additions to the $KEY value

On the read character command (read *char) MiniM adds to the $key
value series of character to indicate that special keys (Ctrl, Alt or Shift) are
pressed: ”a”, ”c” and ”s”. If was pressed 2 special keys. added 2 symbols,
and for all 3 keys added 3 symbols. Left and right Alt and left and right Ctrl
does not destinquished. For example, on enter Ctrl+F we got:

USER>r *x s k=$k zzdump x,k

0000: 32 37 27

0000: 1B 4F 50 63 .OPc

and on enter Ctrl+Shift+F1 we got:

USER>r *x s k=$k zzdump x,k

0000: 32 37 27

0000: 1B 4F 50 63 73 .OPcs

As the functional keys are also used keys Insert, Delete, Home, End, Page
Up, Page Down and arrow keys.

The console device return escape sequences for functional keys in the
upper case and additional alternating modifiers in the lower case.

MiniMono difference

MiniM Embedded Edition does not implement |CON| device.

308 CHAPTER 10. DEVICE PARAMETERS

10.3 DLL

The |DLL| device is created automatically as a principal input-output device
for MiniM Embedded Edition.

On the MiniMono initialization stage host process defines event handlers
for this device. In the case of some handler was defined, the MUMPS routines
use this handlers, otherwise MUMPS routines use default device behavior.

All device options and device behavior are fully defined by the host pro-
cess.

10.4 FILE

The FILE devices used to create, delete, read and write files of OS file sys-
tems.

The FILE devices are identified by strings with the ”|FILE|” prefix and
following file name. The file devices are distinquished by file names and are
case sensitive. This allows to use two devices to operate with one file, for
example:

|FILE|c:/temp/dat.txt File c:/temp/dat.txt
|FILE|\\srv/temp/dat.txt File temp/dat.txt on server srv

The open command with FILE device ignores timeout value and cannot
break file opening before timeout expired. But, if timeout is specified, pro-
cess sets the $test value to 0 or 1 value if file does not opened or opened
successfully.

MiniM supports for file devices several options by name and by position.
If option is specified without name, it is used by position, otherwise by name
in any position.

The open command options

/MODE File open or usage mode.
/SHARE Share mode.
/TERM Read terminator.
/TRUNCATE File truncation option.

The /MODE option

10.4. FILE 309

The /MODE=expr option requires the value of expr, and it is evaluates as
a string and used as several character flags set. Characteds can be specified
in any sequence and case. The /MODE option can be specified by position
in first position.

r Use file to read. Flag can be combined with the w flag.
w Use file to write. Flag can be combined with the r flag.
a Open file in append mode. On opening the file position

automatically sets to the end of file.
t Use file in text mode. Cannot be used with the b flag.
b Use file in binary mode. Cannot be used with the t flag.
n Open new only file.
e Open existing only file.

When you open the file in binary mode terminator read default is empty
string. If the read terminator is specified, it is used. If file is opened in text
mode, the read terminator is $C(10) byte. If this byte is read, and last read
byte is $C(13), this bytes are removed from read result. The $C(13) byte in
other positions does not removed and read result does not incluse the read
terminator. If file is opened in text mode, the /TERM option is ignored even
if specified.

If both n and e flags does not specified, and w or a flags not specified, by
default process openes only existing file without new file creation (as it was
specified e flag). If was not specified n and e flags and flag w or a is present,
process openes existing file or creates new file if this file does not exists.

Examples:

Open file to write and in append mode:

open "|FILE|c:\temp\text":("wa")

open "|FILE|c:\temp\text":(/MODE="wa")

Open existing file to read:

open "|FILE|c:\temp\text":("re")

open "|FILE|c:\temp\text":(/MODE="re")

If the /MODE option is not specified, by default used flags rte.

In text mode the carrage return command

write !

310 CHAPTER 10. DEVICE PARAMETERS

writes to the file two symbols $C(13,10). In binary mode this command
writes only $C(10) symbol.

The /SHARE option

This option specifies file sharing mode with other processes. This option
can be specified by position in 2 position or by name in any position. File
sharing mode evaluates as a string and used as a share flags case insensitive.

r Allow other processes read file.
w Allow other processes write to file.
e Deny other processes all access.

If this option is not specified, by default used file sharing flag r.

Examples:

Open file to read and allow other processes to read:

open "|FILE|c:\temp\dat":(:"r")

open "|FILE|c:\temp\dat":(/SHARE="r")

The /TERM=expr option

This option specifies the read string terminator for binary mode. If option
is not specified, it is an empty string and read string command reads up to
specified read length is reached or up to maximum string length (32K).

The /TERM=expr option can be specified by name in any position, or by
position in 3 position for open command or in 2 position for use command.

For text mode the /TERM option is ignored.

The /TRUNCATE option

The /TRUNCATE option need to be specified for open command if file
need to be truncated to zero file size. This option can be used only by name.
For example:

open "|FILE|c:\temp\report23":("w":"e":/TRUNCATE)

Here the c:\temp\report23 file is opened for write and truncated to zero
length.

The /TRUNCATE option requires that the file is opened for write or for
append.

The use command options

The use command with the file device accept the following options:

10.4. FILE 311

/LOCK = expr Make file locking. Used with the /SIZE op-
tion and optional /POS option.

/POS = expr Specify file locking start position. Optional.
/SIZE = expr Specify file locking size.
/OFFSET = expr Specify file locking offset
/TRUNCATE Truncate file to current position.
/TRUNCATE = expr Truncate file to specified position.
/TERM = expr Read string terminator.

The /LOCK = expr option

This option make file locking and expression expr evaluates as a string
and must contain locking flags as character:

s or S Make shared locking.
e or E Make exclusive locking.
u or U Unlock.
other Generates <DEVPARAM> error.

Shared locking can be made by several processes and it deny to make
exclusive locking. Exclusive locking can be made by one process and deny
all other shared and exclusive locking.

On unlocking need to have start and size of locking area the same was
locked.

One process can make several file locks on different file areas and can
make different locking types. If file cannot lock specified area, process goes
to wait locking until locking can be possible.

The /LOCK option can be specified only by name.

The /POS = expr option

The /POS = expr option is used in conjuction of the /LOCK option to
setup start of locking region. This option can be used in conjuction with the
/OFFSET option to specify /POS start countdoun. If the /POS option is
not specified, process make lock from current file position.

The /POS option can be specified only by name.

The /SIZE = expr option

The /SIZE = expr option is used to specify file locking area size in con-
juction with the /LOCK option.

The /SIZE option can be specified only by name.

312 CHAPTER 10. DEVICE PARAMETERS

The /OFFSET = expr option

The /OFFSET = expr option is used to specife the start point offset for
the /POS option. The expr is evaluated as an integer and can be one of the
following:

0 Start from file begin.
1 Start from current file position.
2 Start from file end.

Other option value generates the <DEVPARAM> error.

The /OFFSET option can be specified only by name.

Double meaning of /POS and /OFFSET options

If the /LOCK option is specified, a /OFFSET and /SIZE options ap-
plies to the file locking. If the /LOCK option is not specified, a /POS and
/OFFSET options changes the current file position and the /SIZE option is
ignored.

The /TRUNCATE option

The /TRUNCATE option without value make file truncation by current
file position.

The /TRUNCATE option can be specified only by name.

The /TRUNCATE = expr option

The /TRUNCATE = expr option is used to specify file truncation by
specified in the expr file position.

The /TRUNCATE = expr option can be specified only by name.

The /TERM = expr option

The /TERM = expr option is used to specify read string terminator. The
value of the expr expression is evaluated as a string and used as a terminator.
This terminator used only in the binary mode. For text mode terminator is
saved but does not used.

The /TERM = expr option can be specified only by name.

The close command options

The close command with the file device accept the following options:

/TRUNCATE Truncate file by current file position.
/TRUNCATE = expr Truncate file by specified file position.
/DELETE Delete file after closing.
/RENAME = expr Rename file after closing.

10.5. MEM 313

The /TRUNCATE option

The /TRUNCATE option without value make file truncation by current
file position.

The /TRUNCATE option can be specified only by name.

The /TRUNCATE = expr option

The /TRUNCATE = expr option is used to specify file truncation by
specified in the expr file position.

The /TRUNCATE = expr option can be specified only by name.

Examples:

s dev="|FILE|c:\temp\log"

...

close dev:(/TRUNCATE)

The /DELETE option

This option deletes file after closing device.

The /DELETE option can be specified by name only.

The /RENAME = expr option

The /RENAME = expr option renames file after device closing. The
value of expr is evaluated as a string and used as new file name.

The /RENAME option can be specified by name only.

Examples:

s dev="|FILE|c:\temp\log"

...

close dev:(/RENAME="c:\temp\log"_$h)

Since version 1.28 MiniM supports counting of system variables $X and
$Y for FILE device in text mode (value ”t” in option MODE).

10.5 MEM

The device with MEM type in interprocess communication device and op-
erates by internal in-memory buffers. MiniM processes can exchange data
using MEM devices and this data does not stored on the disk, does not

314 CHAPTER 10. DEVICE PARAMETERS

leave server and does not outputs to any other place. The MEM devices are
bidirectional devices for two processes.

The MEM devices can have any name, followed by the device type prefix.
Both processes to interact with device need to specify the same device names.
First process who opens device first is a server process for this device. Second
process who opens device is a client process for this device.

For MEM devices only one process can be a server process. If this server
process closes device, this device is destroyed. Client process for the MEM
device can be only one at one moment. Other client process can open device
only after previous client process closes this device. If client process closes
the MEM device, all data wrote to the memory buffer are lost if the server
process does not read them.

If the client process does not open MEM device, the server process cannot
write any data to device and write cimmands are wait until client process is
connected.

If one client process closes MEM device, other process can open the same
MEM device and be a current client process for this device. But this second
client process cannot read data sent to first client process.

The MEM devices ignores open command timeout, but if timeout is spec-
ified, process sets the $test system variable to 0 or 1 in depend of device is
opened and connected to or not successfully.

The open command options

The /MODE = expr option

This option specify the text or binary and read / write device mode. The
expression expr evaluates as a string and need to be a set of special character
flags. Characters are cese-insensitive.

This option can be used by position in 1 position or by name in any
position.

Characters meaning:

r Open device for read. Flag can be combined with the w
flag.

w Open device for write. Flag can be combined with the
r flag.

t Open device in text mode. Cannot be combined with
the b flag.

b Open device in binary mode. Flag cannot be combined
with the t flag.

10.5. MEM 315

If device is opened in binary mode, the read string terminator by default
is an ampty string. If terminator is specified, it is used. If edvice is opened in
text mode, the read string terminator is $C(10) symbol. If before this symbol
was read the $C(13) symbol, it is removed from string too. Symbols $C(13)
in other positions does not removed. The read string command return string
without terminator. In text mode the /TERM option is ignored even if it is
specified.

The /MODE option always must have expression expr.

Examples:

s dev="|MEM|mnm srv sample"

o dev:("rwt")

o dev(/MODE="RWT")

If the /MODE opion is not specified, the MEM device by default use read
and write permissions and work in binary mode.

The /MODE option can be specified differently by server and client pro-
cess, each process operate by device with options which this process use.

The /TERM = expr option

The /TERM = expr option specify the read string terminator for binary
mode. If this option is not specified, process use the empty string by default
and read string command read data up to maximum string (32K) or up to
specified read length.

This option can be specified by position in 2 position ot by name in any
position.

The /TERM option always must have the expr expression.

For text mode the read string terminator does not used.

Server and client processes for MEM device can use different read string
terminators.

The /BUF = expr option

This option specify internal data buffer for MEM device in bytes. If
buffer is fullfilled by write process and other process does not read data,
write process can stay in wait state to write data until buffer is read and
have enough space.

Minimum buffer size is 512 and maximum buffer size is 1048576 bytes.
If specified less then minimum, device use minimum size and if specified

316 CHAPTER 10. DEVICE PARAMETERS

greater than maximum, device use maximum. By default device use 65536
bytes buffer length.

Buffer size increasing grows the need server memory usage.

Buffer size cannot be changed by client process, and can be setting up
only by creator process (server process).

The use command options

The use command for MEM devices can accept the following command
options:

/TERM Changes current read string terminator.
/MODE Changes current read / write or text / binary

mode.

Other use command options for MEM device are ignored.

The /MODE option for use command can be specified by position in 1
position and the /TERM option can be specified by position in 2 position.

The close command options

The close command for MEM devices does not accept any options. If
any option have been specified, it is ignored. After closing device by client
process the MEM device can accept connection from other process as client
process. After closing device by server process (creator) the client process
generate the <DEVICE> error.

MiniMono difference

MiniM Embedded Edition does not implement |MEM| device.

10.6 NULL

The NULL - type devices are devices with no any real input and output
actions. Writing to the NULL device make data lost and read from NULL
device return control immediately with no data. If process read string, com-
mand return empty string, if process read character code, command always
return the -1 value.

Each process can open several NULL devices with different names fol-
lowed by the device type prefix. For example:

10.7. PIPE 317

TEMP>s dev="|NULL|" o dev

TEMP>s dev2="|NULL|2" o dev2

Here we open 2 NULL devices, with names ”|NULL|” and ”|NULL|2”.

NULL devices are used to lost all output.

Open, use and close commands options

MiniM ignores all open, use and close commands options for NULL de-
vices.

If new MiniM process is run by the job command, this child process by
default have the NULL device as a principal and current device.

10.7 PIPE

The PIPE input-output devices runs console application with input-output
redirection. Child process accept in stdin stream all write commands from
MiniM process and MiniM process read data from child’s stdout stream using
read command.

Device identification string is a type prefix as ”|PIPE|” with following
child process file name with command line parameters. For example, to read
file’s list in the current folder can be used command line:

"|PIPE|dir /b"

Several Windows operating system utilities and other applications sup-
ports noninteractive execution mode and can exchange data with parent
process using standard streams (stdin + stdout). For example, operating
system command ”dir” execution with different command line options can
list directories to standatd output stream. If it is run in console mode, list
displayed on the screen, and this output can be redirected to the file. The
same possibilities used in the PIPE devices, but MiniM process interact with
child process using read and write commands. For example:

>s dev="|PIPE|set" o dev

>u dev f r a s s($i(s))=a

>c dev

318 CHAPTER 10. DEVICE PARAMETERS

Here we create PIPE device to execute set operating system command
without command line options. All string was read are stored in lical variable
s. Read terminates on error <ENDOFFILE>. This code mean that MiniM
server settings TrapOnEof have value 1.

>s mode=$v("proc",5,0)

>s dev="|PIPE|set" o dev

>u dev f r a q:$zeof s s($i(s))=a

>c dev s mode=$v("proc",5,mode)

This example directly control TrapOnEof mode to read all strings from
child process and code control the $zeof system variable value to check all
data was read. After full reading process returns previous TrapOnEof state.

The open command options

With PIPE devices the open command supports followinf options:

/MODE = expr Open mode - text / binary, read / write.
/TERM = expr Read string terminator for binary mode.
/DIR = expr Child process current directory.

The /MODE = expr option

This option specify the device mode after opening. The expr expression
evaluates as a string and need to be a set of special flags case insensitive.
Option supports following flags:

r or R Enable read from device. Flag can be combined
with w flag.

w or W Enable write to device. Flag can be combined with
r flag.

t or T Use text mode to read and write. Flag cannot be
combined with b flag.

b or B Use binary mode to read and write. Flag cannot
be combined with t flag.

other Ignored.

If /MODE option is not specified, device openes in rt mode, Read enabled,
write disabled, text mode for read and write commands.

If no r or b flag specified, by default used text mode. If does not specified r
or w flags, all read and write commands are disabled and generates <READ>

10.7. PIPE 319

and <WRITE> errors correspondingly.

If text mode is enabled, line feed write

write !

outputs to device symbols $c(13,10), and in binary mode only $c(10) symbol.

The /MODE option can be specified by position in 1 position and by
name in any position.

The /TERM = expr option

This option specifies read string terminator for binary mode. Expression
expr evaluates as a string. After read string terminator is removed from read
result.

For text mode the read string terminator is ignored. The text mode read
string terminator is a $c(10) symbol. If before this symbol was read $c(13)
symbol, it removes from read result too.

By default read string terminator is an empty string.

The /TERM option can be specified by position in 2 position or by name
in any position.

The /DIR = expr option

This option specify the current directory for child process. The expr
expression evaluates as a string and need to be existing directory name.

The /DIR option can be specified by position in 3 position or by name
in any position.

By default child process runs in the current MiniM process directory.

The use command options

The use command with PIPE device accepts only one option - termi-
nator change (/TERM = expr). This option changes previous read string
terminator and use if current mode is bunary mode.

The /TERM option for use command with PIPE device can be used only
by name in any position.

The use command cannot change read / write or text / binary mode.

Other options are ignored.

The close command options

320 CHAPTER 10. DEVICE PARAMETERS

The close command for PIPE device accepts only one option, /TERMI-
NATE without value. If /TERMINATE option is present, MiniM process
terminates child process if it is active.

The /TERMINATE option can be specified only by name in any position.

Other options are ignored.

10.8 PRN

Devices with the |PRN| type are supported only in the Windows editions of
the MiniM Database Server and MiniMono.

The PRN device is used for printing and to control printing options.

This devices are work only in write mode, all read commands generates
a <READ> error.

Print control options for PRN devices are accepted only with open com-
mand. The use and close commands cannot change printing options.

Some printing devices which works as a printer but are not read hardware
printers (for example, virtual printers or faxes) can create dialog windows to
detail some printing options, for example to specify pdf file name. Program-
mer must check every used printer type for used user account and check
printer driver behavior. And programmer must check account’s rights to
print to network printers.

PRN device names

To specify printer need to be used a device identification string with
”|PRN|” device type prefix with following printer name as it is specified in
Windows. If it is an empty string

s printer="|PRN|"

MiniM process uses default printer. Printer names can be for example:

s dev="|PRN|Acrobat Distiller"

s dev="|PRN|Fax"

s dev="|PRN|EPSON TX117_119"

To specify network printer name need to be used the computer name and
printer name as it is configured in the network, in UNC naming conventions.
For example, if server name is ”NTServer” and printer configured with ”HP
LaserJet 5P” network name:

10.8. PRN 321

s dev="\\NTServer\HP LaserJet 5P"

The open command options

All PRN device options can be specified only by name in any position
and options by position does not supported.

The open command with PRN devices supports the following options
(with depending of real printer driver possibilities):

/MODE Setup text or binary mode.
/OUTPUTFILE Specify the file name to output print image

to.
/DOCNAME Specify printer job name.
/ORIENTATION Spacify printer paper oriantation.
/COPIES Specify print copies number.
/QUALITY Specify printing quality.
/COLOR Specify coloring mode - color or black and

white.
/DUPLEX Specify duplex printing.
/COLLATE Specify printed pages collation method.
other Ignored.

The /MODE = expr option

The value of expr expression evaluates as a string. If this string contains a
symbol ”t” or ”T”, device opens in a text mode. Id string contains a symbol
”b” or ”B”, device opens in a binary mode. Binary mode corresponds to the
”RAW” printer format and text mode corresponds to the ”TEXT” printer
format. If this option does not specified, or expr does not contain special
mode flags, process opens device in a text mode, it is by default.

The /OUTPUTFILE = expr option

If this option is specified, device outputs to file name specified in expr
value. If this option is not specified, printer driver use default settings.

The /DOCNAME = expr option

If this option is specified, the expr expression value used as a printer job
name. If this option is not present, MiniM process use default printer job
name ”MiniM”.

The /ORIENTATION = expr option

322 CHAPTER 10. DEVICE PARAMETERS

If this option is specified, the expr expression evaluates as a string. MiniM
supports the following values:

10.8. PRN 323

”PORTRAIT” Print with vertical page orientation.
”LANDSCAPE” Print with horizontal page orientation.
other Ignored and printer use default settings.

The expr value used case insensitive.

The /COPIES = expr option

If this option is not specified, printer driver uses printing copies number
configured by default. If option is present, expr expression evaluates as an
integer an need to be greater then 0. Otherwise MiniM process use the value
of 1. This option specify printing copies number to print in this job. This
option usage depends of printer driver possibilities.

The /QUALITY = expr option

This option specify printing quality. If option is not present, printer driver
uses the value configured by default. If present, the value of expr expression
need to be one of the following strings: ”HIGH”, ”MEDIUM”, ”LOW”,
”DRAFT”. This values used case insensitive. Other values are ignored and
printer driver uses the default settings. This option usage depends of printer
driver possibilities.

The /COLOR = expr option

This option specify coloring option. If option does not specified, printer
driver uses default settings. If option is present, the expr expression evaluates
as a string and can be one of the following (case insensitive):

”COLOR” Print using colors.
”MONOCHROME” Print using black and white or in grayscale

mode if possible.
other Ignored and printer driver uses default set-

tings.

This option usage depends of printer driver possibilities.

The /DUPLEX = expr option

This option specifi printing using one or both page sides (if hardware
allow this). If used landscape page orientation, both top page edges are on
the same page edge. If used portrait pahe orientation, bottom page edge is
on the same page of top edge of next page. The value of option can be:

”Simplex” One-side printing with current page orienta-
tion.

324 CHAPTER 10. DEVICE PARAMETERS

”Horizontal” Two-side printing with landscape page orien-
tation.

”Vertical” Two-side printing with portrait page orinta-
tion.

other Ignored and printer driver uses default set-
tings.

This option values are used case insensitive.

The /COLLATE = expr option

This option specify printed copies collation (if hardware supports this).
The value of expr evaluates as an integer and compares with 0. If it is 0,
copies collation is disabled for this printer job, otherwise enabled. If this
option does not present, printer driver uses default settings.

The write command specific behavior for the PRN device

write !

In text mode this command outputs symbols $c(13,10), and in binary
mode only $c(10) symbol.

write #

This command is equivalent of output page feed command ($C(12)). Pro-
grammers should consider this in binary mode.

write ?N

In text mode this command outputs appropriate space numbers to feet
to specified position N. In binary mode this command outputs N spaces.

The close command for PRN device make printer job ending commands
and ends printing.

10.9 STD

The STD device is creates automatically if MiniM process runs with input-
output redirection or with -std option.

If process runs with redirection, process get commands from standard
input and terminates after execution last command.

If MiniM process runs with -std command line option, process check op-
tion -x is present and executes specified commands. After commands execu-
tion process check option -h present. If -h command line option is present,

10.9. STD 325

process terminates execution, otherwise still read next commands from stan-
dard input stream.

The STD device cannot be created manually and cannnot be closed be-
cause it is principal device. The STD device can be controlled by only use
commands only.

The use command option

The use command option with STD device can accept the following op-
tions:

/TERM = expr Specify read string terminator.
/MODE = expr Specify input-output mode - text or binary.
other Ignored.

The /MODE = expr option

The /MODE option specify input-output mode. The expr expression
evaluates as a string and value can contain one character of the following:

t or T Switch device to text mode.
b or B Switch device to binary mode.
other Generates a <DEVPARAM> error.

In text mode read string terminator is a symbol $C(10). If before this
symbol was read a symbol $C(13). this symbol removes from read result too.

By default STD device still work in a text mode.

While proicess read commands from input the device works in a text
mode and before execution commands switches to specified mode.

In binary mode device use specified terminator. By default device have
empty string as a terminator.

The STD device does not support read timeouts and specified in read
commands timeouts are ignored. But if a timeout is specified, the system
variable $test sets into value 1.

MiniMono difference

MiniM Embedded Edition does not implement |STD| device.

326 CHAPTER 10. DEVICE PARAMETERS

10.10 STORE

The STORE device uses data in local or global variables. All write commands
appends data to variable and read commands read data from variable. Local
or global variables of STORE device are automatically indexed if need to
store long data or many strings.

The STORE device identification string is a ”|STORE|” prefix with fol-
lowing local or global variable name. This variable can have one or more
indises. For example:

s dev1="|STORE|stream("""")"

s dev2="|STORE|"_$na(^mtempRun($j,""))

The STORE device automatically switches between indices using internal
$order function call. Start value of last used index is a start value for this
$order step. This step is automatically made on device open. On read com-
mands device uses indices as is, what exists in variable and write command
automatically increment next index by one.

The STORE device can be opened for read only or for write only. Before
switch to write mode device removes all data from specified local or global
variable after specified last index.

All read and write commands are made in current transaction context
and internally use the set commands with all need side effects.

The STORE commands options

The /MODE=expr option

The /MODE option specify device mode. The expr expression evaluates
as a string and is used as a special symbol flags. Device supports the following
flags:

r or R Open device to read. Cannot be combined with w
flag.

w or W Open device to write. Cannot be combined with r
flag.

t or T Switch to text mode. Cannot be combined with b
flag.

b or B Switch to binary mode. Cannot be combined with
t flag.

other Ignored

10.10. STORE 327

If this option does not specified, device use by default flags ”wt”, allow
write and still work in text mode and before opening device automatically
removes all data after specified device name.

The /MODE option can be used by position in 1 position or by name in
any position for open and use commands.

In the binary mode the command

write !

writes to variable symbol $c(10) and in text mode writes symbols $c(13,10).

The /TERM = expr option

This option specify read string terminator for binary mode. The expr
expression evaluates as a string and used as read terminator. The terminator
content does not included into read result.

For text mode the read string terminator is ignored. For text mode as
read string terminator uses symbol $c(10). If before this symbol was read
symbol $c(13), this symbol removes from read result too.

The read string terminator by default is empty string.

The /TERM option can be specified by position in 2 position or by name
in any position.

The /EOL = expr option

The /EOL option specify how to handle end-of-line command in text
mode. This option are applied only in text mode. The expr expression
evaluates as an integer and compares with 0. If value is not zero, in text mode
all read commands use end of current subindex as end of string and write
! command automatically switches to next subindex. Otherwize read and
write commands use subindices values sequentially as one very big character
sequence.

By default this option is 1.

This option can be specified by position in 3 position or by name in any
position for open and use commands.

The close command with STORE device ignores all options.

Example how to use the STORE device:

328 CHAPTER 10. DEVICE PARAMETERS

USER>s dev="|STORE|abc(12)" o dev

USER>u dev w 456,!,789 u 0 c dev w

abc(13)="456"

abc(14)="789"

dev="|STORE|abc(12)"

Here we open STORE device to write, in text mode and use end-of-line
as new subindex ((/MODE=”wt”:/EOL=1)). And here we specify to use
local variable abc with subindex 12. Next we make this device current and
write string 456, end-of-line and string 789. Next we close this device. After
this actions we have written data into local variables abc(13) and abc(14).

10.11 TCP

The TCP device uses TCP/IP sockets to exchange data and control socket
state. Device use open, receive, send data and close socket functions. MiniM
device can open TCP device as client side as such as server side socket.

TCP device have device identification string as ”|TCP|” device type with
following tcp address and port or computer name and port or port only.
MiniM process uses full device name to determine is it a server-side socket
or a client-side socket. Device name are distinquished by name cese sensitive
and programmer must check case of computer name to prevent or allow usage
connection to the same tcp server.

Naming conventions

|TCP| Device has been created automatically
for jobbed MiniM process with job com-
mand and with concurrent socket.

|TCP|:port Device is a server-side socket for this
port.

|TCP|server:port Device is a client-side socket to connect
to this server and port.

|TCP|address:port Device is a client socket to connect to
this address and port.

Examples:

s dev="|TCP|:80" o dev

10.11. TCP 329

s dev="|TCP|www.server.com:80" o dev

s dev="|TCP|127.0.0.1:80" o dev

Here we open 3 TCP devices. In 1) case we open server socket for port
80 and after opening device is ready to listen and accept incoming tcp con-
nections. In 2) case we open client-side tcp socket to connect to server
”www.server.com” and port 80. After opening device is ready to read and
write data. In 3) case we open client device to connect to tcp address 127.0.0.1
and port 80. After opening device is ready to read and write data.

TCP device ignores open command timeout. But if timeout is specified,
process change value of $test system variable to 0 if device does not opened
or to 1 if all ok.

The open command options

/SOCKET Specify tcp socket number already opened by other func-
tion inside current process.

/MODE Specify text or binary and read - write mode.
/TERM Specify read string terminator.

The /MODE = expr option

This option specify the device mode. The expr expression evaluates as a
string and need to be special symbol flags case insensitive.

r Open socket to read. Can be combined with w flag.
w Open socket to write. Can be combined with r flag.
t Open in text mode. Cannot be combined with b flag.
b Open in binary mode. Cannot be combined with t flag.

The /MODE = expr option can be specified by position in 1 position or
by name in any position.

Examples:

s dev="|TCP|:80"

o dev:("RW")

o dev(/MODE="RWT")

Here in 1) case we open TCP device to read and write in binary mode
and option is specified by position. In the 2) case we open TCP device for
read and write in text mode and option is specified bu name.

330 CHAPTER 10. DEVICE PARAMETERS

If the /MODE = expr option does not specified, TCP device use read
and write permissions and still work in binary mode.

The /SOCKET = expr option

Syntax:

/SOCKET=socknumber

The /SOCKET option can be used to create TCP device with tcp socket
has been opened by external functions inside this or external process, for
example using $zdll function or if process runs from other process with socket
inheriting. If new TCP device has been created with this option, device does
not open new internal connection and use specified socket. On TCP device
closing this socket closed too.

The /SOCKET option have not positional form usage and can be specified
only by name. The socknumber expression always must be specified and
evaluates as an integer.

The /TERM = expr option

This option specifies read string terminator for device in dinary mode.
If this option has not been specified, device use empty string as read string
terminator for binary mode and read up to maximum MiniM string length
(32K) or to specified read string length limit.

In text mode device use as read string terminator the symbol $c(10). If
before this symbol was read symbol $c(13), this symbol removes too from
read string result. Other $c(13) symbols does not removed. Read string
result returned without terminator. For text mode device accept, but does
not use the /TERM option.

The /TERM option can be specified by position in 2 position ot by name
in any position.

The value of expr expression evaluates as a string.

The use command option

The use command with TCP device accept the following options:

/TERM Change current read string terminator.
/MODE Change current device mode.
/ACCEPT Goes to wait external connection.
/ATO Accept timeout.

10.12. TNT 331

Other options the use command with TCP device ignores.

The /MODE option for use command can be used by position in 1 position
and /TERM option van be used by position in 2 position. Other options can
be used by name only.

The /ACCEPT option

The /ACCEPT option has not value. The use command for TCP de-
vice make going device to wait incoming tcp connection. On connection is
made new socket stored in internal device data. If before this operation
been accepted other incoming connection it is closed and replaced by new
connection.

Accepted socket number can be obtained by $view(”dev”,2) function for
current TCP device or by $view(”dev”,2,devname) for specified TCP device.

Acceptes TCP connection can be used by the job command to run one
more MiniM process with concurrent socket on the same TCP port.

The /ATO = expr option

The /ATO option specify wait timeout to wait incoming TCP connection.
Device mean that it was opened as a server socket. The /ATO option need
to be with /ACCEPT option in pair and have mandatory value. This expr
expression evaluates as a number and used a wait timeout in seconds.

This timeout is applied only to /ACCEPT operation and has a side effect.
If incoming connection has abeen made before timeout expired, process sets
the $test system variable to 1, otherwize to 0. If the /ATO option has not
been specified, process does not change the $test value.

The close command options

TCP device does not accept any option on close command even it is
specified, all options are ignored. All internal opened TCP sockets closed.

10.12 TNT

TNT device is a input-output device created automatically to handle input-
output for telnet clients. Telnet client application or other with telnet pro-
tocol interact with MiniM process over TCP/IP connection. TNT device
translates telnet protocol to device program interface.

TNT device creates automatically on MiniM process starts to handle
incoming telnet connection. It is principal device and cannot be opened or

332 CHAPTER 10. DEVICE PARAMETERS

closed manually. Device identification string have a prefix with device type
”|TNT|” with following integer. It is internal socket number and can be used
by external functions, for example $zdll. Device identification string does
not changes while process still active.

TNT devices does not support any open and close options.

The use command options

The use command with TNT device can accept the following options:

/COLUMNS = expr Use this column count.
/LINES = expr Use this lines count.
/ECHO = expr Use or not echo mode on input.
/TERM = expr Read string terminator.
/CTRLC = expr Generate or not error on Ctrl+C pressing
/MODE = expr Use text (t) or binary (b) mode to read bytes

from telnet client
/DELIM = expr Read string delimiters in text mode
other Ignored

The /COLUMNS = expr option

The /COLUMNS = expr specifies how many columns need to be used
to display information. It is used by MiniM process. By default used 80
columns.

The /COLUMNS = expr option can be specified by position in 1 position
and by name in any position.

The expr expression evaluates as an integer. If result is less than or equal
0, process generate the <DEVPARAM> error.

The /LINES = expr option

The /LINES = expr option specify how many lines need to be used to
display data on the telnet screen. By default used 25 lines.

The /LINES = expr option can be specified by position in 2 position or
by name in any position.

The expr expression evaluates as an integer. If result is less than or equal
0, process generate the <DEVPARAM> error.

Both /LINES and /COLUMNS options does not send any data to telnet
client, they are used only by MiniM device to recalculate data visibility.

The /ECHO = expr option

10.12. TNT 333

This option specify echo mode while entering data in telnet client. MiniM
process controls any input and resend characters back to client to display
input result correctly. By default echo is enabled. If telnet client support
own echo mode, it must be turned off.

The expr expression evaluates as an integer. If it is 0, echo is off, otherwize
echo is on.

The /ECHO = expr option can be specified by position in 3 position or
by name in any position.

The /CTRLC = expr option

The /CTRLC = expr option specify error generation behavior on Ctrl+C
pressing. The expr expression evaluates as an integer. If it is 0, process does
not generate <INTERRUPT> error on Ctrl+C pressing, otherwise generate.
By default <INTERRUPT> error generating mode is enabled. This option
can be specified by name only.

The /MODE = expr option

Option /MODE = expr switches device for read mode from telnet client
from text to binary and back. Option use text (t or T) or binary (b or
B) mode. By default telnet device use text mode. If device work in binary
mode, Ctrl+C interruption turned off, but this setting still active and Ctrl+C
interruption is restored by current device setting on return back to text mode.

The expr value evaluates as a string and option use only first symbol case
insensitive. If this symbol is t or T, device use text mode and if symbol is b
or B, device use binary mode.

If device work in binary mode, input string editing is turned off and
no other input escape sequences are threated, all bytes goes to input string.
Read character command places symbol was read into system variable $KEY
and read string command places into system variable $KEY the string ter-
minator if read string was terminated by terminator.

The /MODE = expr have not by-position specification and supports only
named form in any position, the option name must be specified directly.

Example to read bytes in binary mode:

u $p:(/mode="b":/term="":/echo=0)

k ^CH

f i=1:1:16 r *ch s ^CH($i(^CH))=ch

u $p:(/mode="t":/echo=1)

zw ^CH

334 CHAPTER 10. DEVICE PARAMETERS

Example to read strings in binary mode with terminator of line feed
character:

u $p:(/mode="b":/term=$c(10):/echo=0)

k ^STR

f i=1:1:5 r str s ^STR($i(^STR))=$zquote(str)

u $p:(/mode="t":/echo=1)

zw ^STR

The /TERM = expr option

The /TERM = expr option specify read string retminator. Read string
terminates if process reads full specified terminator and terminator does not
included into read string result. This option can be specified by name only.
On top level commands input read string terminator does not used anyway
and continues to use while commands executes.

Option /DELIM = expr

The /DELIM option specifies list of read string terminators. Read string
terminates if one of bytes specified in option was reached. The delimiter
character does not included into read string result. The /DELIM option can
be specified by name only.

By defaut device uses delimiters for /DELIM option like be specified with
value of $C(10,13).

If ESCAPE character has been specified, variable $KEY gets entire escape
sequence. And in this mode line editing is limited by BACKSPACE symbol.

MiniMono difference

MiniM Embedded Edition does not implement |TNT| device.

Chapter 11

Error Handling

11.1 Error handling tools

To handle errors MiniM Database Server implements standard and some
extended functionality. System variables to use in error handling are:

$zerror Shoe extended last error text for error oc-
cured.

$ecode Contains list of last fired errors and assign-
ment generate an error.

$estack Show stack level counted from last made new
$estack command or from top level.

$etrap Contains error handling commands sequence.
$stack() Returns information about process stack and

execution states.

Extended MiniM Database Server error handling tools are functions $view(”err”):

$view(”err”,1) Return internal error place in MiniM source
code. This information can help to localize
an error reasons with MiniM Database server
support.

$view(”err”,2,code) Return extended error text description for
specified standard error code which are im-
plemented by MiniM Database Server.

Error handling control is made by assignment to system variables $ecode
and $etrap and call a new command with $estack and $etrap. The new

335

336 CHAPTER 11. ERROR HANDLING

command with the $etrap system variable can be used in extended assignable
form. System variable $zerror is accessible to read only, cannot be changed
directly and copy cannot be made by the new command.

The break command now is not implemented in MiniM Database Server.
This command is allowed in routines but on execution in any form generates
an error <UNIMPLEMENTED>.

Current MiniM Database Server implements only error handling methods
and tools defined in current MUMPS standard as defined in ANSI MDC
X11.1-1995, now withdrawn, and currently active ISO Standard MUMPS
based on ANSI X11.

11.2 Error handler scheme

On error generation MiniM Database Server check the value of system vari-
able $etrap on the current stack level. On new stack level creation by do,
xecute commands or calling used function the $etrap variable got the value
from previous stack level. If the new command was applied to $etrap vari-
able, from this stack level and later this variable will have new assigned value
and on stack level leaving got value on the previous stack level. After han-
dling error on current stack level MiniM continues unroll stack and check the
value of $etrap to execute error handler.

If the value of $etrap is not empty string, MiniM executes this code
as MUMPS commands instead current stack level commands and without
creating new stack level.

To specify place on the stack where need to handle errors programmer
can use system variable $estack. On new stack creation this variable auto-
matically increment value by one. If the new command was applied to the
$estack value, this variable got the value of 0 and increments every new stack
automatically. On return to previous stack level system variable $estack re-
stores previous value. This behavior alow programmer to check stack level
to execute error handler, for example:

n $es,$et="q:$es d err"

Here the new command applied to $estack variable and from this level
value increments by one. For system variable $etrap was created copy of
value where specified execute d err if the value of $estack is zero. On error

11.3. ERROR GENERATION 337

execution MiniM process unrolls stack to level where the value of $estack
was zero and on this level will be executed command d err.

If on stack unroll MiniM process does not find nonempty value of $etrap,
process continues stack unroll up to top stack level. If it is console or telnet
process, control will be passed to the top command input and error will
be displayed by default on the screen. If process is not interactive, process
terminate execution and halts.

11.3 Error generation

To generate error there is possible three ways: 1) assign non empty string to
system variable $ecode, 2) call operation which generate an error, for example
divide by zero or call undefined variable and 3) call ztrap command.

In the second case be generated a special error, defined in the standard
or extended and implemented by MiniM, and in first and third cases pro-
grammer can control the error content.

On $ecode assignment to an empty string the $ecode content clears and
no other side effect are made. On assignment non empty string to $ecode
process generate an error <ECODETRAP>.

On any standard error or MiniM extended error it is added as defined in
MUMPS standard into $ecode value with comma as a delimiter. For example:

USER>s $ec="w"

<ECODETRAP>

USER>s $ec=$ec_"w"

<ECODETRAP>

USER>w $ec

ww

USER>w e

<UNDEFINED> *e

USER>w $ec

ww,M6,

In standard defined recommended rule to make error text. If error code
starts from the ”M” character, it is a standard error. If error code starts

338 CHAPTER 11. ERROR HANDLING

from the ”Z” character, it is implementation-specific extended error (MiniM
extended error for MiniM Database Server). Otherwise, if error code starts
from the ”U” character, it is a user-defined error. This convention can dif-
ferentiate error classes.

It is recommended to use some of defined rules to create errors in MUMPS
applications to construct the $ecode value. It may be standard defined con-
ventions or any other compatible and portable conventions.

Chapter 12

Regular Expressions

12.1 Regular Expressions Options

Functions $zpcrematch(), $zpcresearch() and $zpcrereplace() are built using
PCRE library (http://www.pcre.org), author Philip Hazel. To use this func-
tions in MiniM can be useful any documentation or samples code and libraries
of regular expressions. Programmers who use other programming languages
can apply knowledge and use the same regular expressions.

Regular expressions documentation is built using original documentation
from http://www.pcre.ru and http://www.pcre.org and adapted for MUMPS
language and MiniM specific implementation.

Value of the options argument, passed to functions $zpcrematch(), $zpcre-
search() and $zpcrereplace(), must be a string with special symbol flags (case
insensitive). If flag is present in the options argument, it is equal regular
expression option is specified. If the options argument is omitted, it is equal
passing empty string with no flags. If the options argument contains unsup-
ported symbol, this symbol ignores.

See the tables how options symbols conforms original PCRE options:

A Conforms to PCRE ANCHORED PCRE option. If this
bit is set, the pattern is forced to be ”anchored”, that
is, it is constrained to match only at the first matching
point in the string that is being searched (the ”subject
string”). For function $zpcrematch() this flag does not
affect, because function make full string match.

339

340 CHAPTER 12. REGULAR EXPRESSIONS

I Conforms to PCRE CASELESS PCRE option. If this
bit is set, letters in the pattern match both upper and
lower case letters. It is equivalent to Perl’s /i option,
and it can be changed within a pattern by a (?i) option
setting.

D Conforms PCRE DOLLAR ENDONLY PCRE option.
If this bit is set, a dollar metacharacter in the pattern
matches only at the end of the subject string. Without
this option, a dollar also matches immediately before
a newline at the end of the string (but not before any
other newlines). The D flag is ignored if M flag is set.
There is no equivalent to this option in Perl, and no way
to set it within a pattern.

S Conforms to PCRE DOTALL PCRE option. If this
bit is set, a dot metacharater in the pattern matches
all char- acters, including those that indicate newline.
Without it, a dot does not match when the current po-
sition is at a newline. This option is equivalent to Perl’s
/s option, and it can be changed within a pattern by a
(?s) option setting. A negative class such as [ˆa] always
matches newline characters, independent of the setting
of this option.

M Conforms to PCRE MULTILINE PCRE option. By de-
fault, PCRE treats the subject string as consisting of a
single line of characters (even if it actually contains new-
lines). The ”start of line” metacharacter (ˆ) matches
only at the start of the string, while the ”end of line”
metacharacter ($) matches only at the end of the string,
or before a terminating newline (unless D flag is set).
This is the same as Perl.

When M flag it is set, the ”start of line” and ”end of
line” constructs match immediately following or imme-
diately before internal newlines in the subject string,
respectively, as well as at the very start and end. This
is equivalent to Perl’s /m option, and it can be changed
within a pattern by a (?m) option setting. If there are
no newlines in a subject string, or no occurrences of ˆ
or $ in a pattern, setting M flag has no effect.

For function $zpcrematch() this flag have no effect be-
cause function match all string.

12.1. REGULAR EXPRESSIONS OPTIONS 341

U Conforms to PCRE UNGREEDY PCRE option. This
option inverts the ”greediness” of the quantifiers so that
they are not greedy by default, but become greedy if
followed by ”?”. It is not compatible with Perl. It can
also be set by a (?U) option setting within the pattern.

X Conforms to PCRE EXTENDED PCRE option. If this
flag is set, whitespace data characters in the pattern are
totally ignored except when escaped or inside a charac-
ter class. Whitespace does not include the VT character
(code 11). In addition, characters between an unescaped
outside a character class and the next newline, inclu-
sive, are also ignored. This is equivalent to Perl’s /x
option, and it can be changed within a pattern by a
(?x) option setting.

This option makes it possible to include comments in-
side complicated patterns. Note, however, that this ap-
plies only to data characters. Whitespace characters
may never appear within special character sequences in
a pattern, for example within the sequence (?(which
introduces a conditional subpattern.

T Conforms to PCRE EXTRA PCRE option. This option
was invented in order to turn on additional functionality
of PCRE that is incompatible with Perl, but it is cur-
rently of very little use. When set, any backslash in a
pattern that is followed by a letter that has no special
meaning causes an error, thus reserving these combi-
nations for future expansion. By default, as in Perl, a
backslash followed by a letter with no special meaning is
treated as a literal. (Perl can, however, be persuaded to
give an error for this, by running it with the -w option.)
There are at present no other features controlled by this
option. It can also be set by a (?X) option setting within
a pattern.

G Execute global search or replace, all occurences.

342 CHAPTER 12. REGULAR EXPRESSIONS

B Conforms to PCRE NOTBOL PCRE option. This op-
tion specifies that first character of the subject string is
not the beginning of a line, so the circumflex metachar-
acter should not match before it. Setting this without
M flag causes circumflex never to match. This option
affects only the behaviour of the circumflex metachar-
acter. It does not affect \A.

E Conforms to PCRE NOTEOL PCRE option. This op-
tion specifies that the end of the subject string is not
the end of a line, so the dollar metacharacter should not
match it nor (except in multiline mode) a newline im-
mediately before it. Setting this without M flag causes
dollar never to match. This option affects only the be-
haviour of the dollar metacharacter. It does not affect
\Z or \z.

P Argument to replace with for function $zpcrereplace() is
used as string with pseudovariables.

12.2 Regular Expressions Syntax

The PCRE library is a set of functions ($zpcrematch(), $zpcresearch() and
$zpcrereplace()) that implement regular expression pattern matching using
the same syntax and semantics as Perl 5, with just a few differences.

Differences from Perl

Differences are listed in comparision with Perl 5.005.

1 Space symbols in PCRE functions are the same as space
symbols in MiniM. It is space, horizontal tabulation,
carriage return, line feed, vertical tabulation and non-
breakable space.

2 PCRE does not allow repeat quantifiers on lookahead
assertions. Perl permits them, but they do not mean
what you might think. For example, (?!a)3 does not
assert that the next three characters are not ”a”. It just
asserts that the next character is not ”a” three times.

12.2. REGULAR EXPRESSIONS SYNTAX 343

3 Capturing subpatterns that occur inside negative looka-
head asser tions are counted, but their entries in the
offsets vector are never set. Perl sets its numerical vari-
ables from any such patterns that are matched before
the assertion fails to match something (thereby succeed
ing), but only if the negative lookahead assertion con-
tains just one branch.

4 Though binary zero characters are supported in the sub-
ject string, they are not allowed in a pattern string be-
cause it is passed as a normal C string, terminated by
zero. The escape sequence \0 can be used in the pattern
to represent a binary zero.

5 The following Perl escape sequences are not supported:
\l, \u, \L, \U, and \N. In fact these are implemented
by Perl’s general string-handling and are not part of its
pattern matching engine. If any of these are encountered
by PCRE, an error is generated.

6 Perl escape sequence \G does not supported.
7 PCRE does not support sequence as pattern(?code).
8 Pattern ”ˆ(a)?(?(1)a—b)+$” conforms to string ’a’ in

PERL, but not in PCRE. In the same time pattern
”ˆ(a)?a” conforms to string ’a’ in Perl and in PCRE,
leaves variable $1 unset.

10 PCRE provides some extensions to the Perl regular ex-
pression facilities:

(a) Although lookbehind assertions in PCRE must
match fixed length strings, each alternative branch of
a lookbehind assertion can match a different length of
string. Perl requires them all to have the same length.

(b) If D flag (PCRE DOLLAR ENDONLY) is set and
M flag (PCRE MULTILINE) is not set, the $ meta-
character matches only at the very end of the string.

(c) If T flag (PCRE EXTRA) is set, a backslash fol-
lowed by a letter with no special meaning is faulted.
Otherwise, like Perl, the backslash is quietly ignored.

(d) If U flag (PCRE UNGREEDY) is set, the greediness
of the repetition quantifiers is inverted, that is, by de-
fault they are not greedy, but if followed by a question
mark they are.

344 CHAPTER 12. REGULAR EXPRESSIONS

Following is described Perl-compatible regular expressions syntax (PCRE).
Regular expressions are very good described in Perl documentation and in
very much books with many samples, for example, ”Mastering Regular Ex-
pressions”, written by Effrey Friedl’s published by O’Reilly (ISBN 1-56592-
257-3).

A regular expression is a pattern that is matched against a subject string
from left to right. Most characters stand for themselves in a pattern, and
match the corresponding characters in the subject. As a trivial example, the
pattern The quick brown fox matches a portion of a subject string that is
identical to itself.

Meta-characters

The power of regular expressions comes from the ability to include alter-
natives and repetitions in the pattern. These are encoded in the pattern by
the use of meta-characters , which do not stand for themselves but instead
are interpreted in some special way.

There are two different sets of meta-characters: those that are recognized
anywhere in the pattern except within square brackets, and those that are
recognized in square brackets. Outside square brackets, the meta-characters
are as follows:

\ general escape character with several uses
ˆ assert start of subject (or line, in multiline mode)
$ assert end of subject (or line, in multiline mode)
. (dot) match any character except newline (by default)
[start character class definition
] end character class definition
| start of alternative branch
(start subpattern
) end subpattern
? extends the meaning of (, also 0 or 1 quantifier, also

quantifier minimizer
∗ 0 or more quantifier
+ 1 or more quantifier
{ start min/max quantifier
} end min/max quantifier

Part of a pattern that is in square brackets is called a ”character class”.
In a character class the only meta-characters are:

\ general escape character

12.2. REGULAR EXPRESSIONS SYNTAX 345

ˆ negate the class, but only if the first character
- indicates character range
] terminates the character class

The following sections describe the use of each of the meta-characters.

Backslash

The backslash (\) character has several uses. Firstly, if it is followed
by a non-alphanumeric character, it takes away any special meaning that
character may have. This use of backslash as an escape character applies
both inside and outside character classes.

For example, if you want to match a ”*” character, you write ”*” in the
pattern. This applies whether or not the following character would otherwise
be interpreted as a meta-character, so it is always safe to precede a non-
alphanumeric with ”\” to specify that it stands for itself. In particular, if
you want to match a backslash, you write ”\\”.

If a pattern is compiled with the X (PCRE EXTENDED) option, whites-
pace in the pattern (other than in a character class) and characters between
a ”#” outside a character class and the next newline character are ignored.
An escaping backslash can be used to include a whitespace or ”#” character
as part of the pattern.

A second use of backslash provides a way of encoding non-printing char-
acters in patterns in a visible manner. There is no restriction on the appear-
ance of non-printing characters, apart from the binary zero that terminates
a pattern, but when a pattern is being prepared by text editing, it is usually
easier to use one of the following escape sequences than the binary character
it represents:

\a alarm, that is, the BEL character (hex 07)
\cx ”control-x”, where x is any character
\e escape (hex 1B)
\f formfeed (hex 0C)
\n newline (hex 0A)
\r carriage return (hex 0D)
\t tab (hex 09)
\xhh character with hex code hh
\ddd character with octal code ddd, or backreference

The precise effect of ”\cx ” is as follows: if ” x ” is a lower case letter, it

346 CHAPTER 12. REGULAR EXPRESSIONS

is converted to upper case. Then bit 6 of the character (hex 40) is inverted.
Thus ”\cz ” becomes hex 1A, but ”\c ” becomes hex 3B, while ”\c; ” becomes
hex 7B.

After ”\x ”, up to two hexadecimal digits are read (letters can be in upper
or lower case).

After ”\0 ” up to two further octal digits are read. In both cases, if there
are fewer than two digits, just those that are present are used. Thus the
sequence ”\0\x\07 ” specifies two binary zeros followed by a BEL character.
Make sure you supply two digits after the initial zero if the character that
follows is itself an octal digit.

The handling of a backslash followed by a digit other than 0 is compli-
cated. Outside a character class, PCRE reads it and any following digits as a
decimal number. If the number is less than 10, or if there have been at least
that many previous capturing left parentheses in the expression, the entire
sequence is taken as a back reference . A description of how this works is
given later, following the discussion of parenthesized subpatterns.

Inside a character class, or if the decimal number is greater than 9 and
there have not been that many capturing subpatterns, PCRE re-reads up to
three octal digits following the backslash, and generates a single byte from
the least significant 8 bits of the value. Any subsequent digits stand for
themselves. For example:

\040 is another way of writing a space
\40 is the same, provided there are fewer than 40 previous

capturing subpatterns
\7 is always a back reference
\11 might be a back reference, or another way of writing a

tab
\011 is always a tab
\0113 is a tab followed by the character ”3”
\113 is the character with octal code 113 (since there can be

no more than 99 back references)
\377 is a byte consisting entirely of 1 bits
\81 is either a back reference, or a binary zero followed by

the two characters ”8” and ”1”

Note that octal values of 100 or greater must not be introduced by a
leading zero, because no more than three octal digits are ever read.

All the sequences that define a single byte value can be used both inside

12.2. REGULAR EXPRESSIONS SYNTAX 347

and outside character classes. In addition, inside a character class, the se-
quence ”\b” is interpreted as the backspace character (hex 08). Outside a
character class it has a different meaning (see below).

The third use of backslash is for specifying generic character types:

\d any decimal digit
\D any character that is not a decimal digit
\s any whitespace character
\S any character that is not a whitespace character
\w any ”word” character
\W any ”non-word” character

Each pair of escape sequences partitions the complete set of characters
into two disjoint sets. Any given character matches one, and only one, of
each pair.

A ”word” character is any letter or digit or the underscore character, that
is, any character which can be part of a Perl ”word”.

These character type sequences can appear both inside and outside char-
acter classes. They each match one character of the appropriate type. If the
current matching point is at the end of the subject string, all of them fail,
since there is no character to match.

The fourth use of backslash is for certain simple assertions. An assertion
specifies a condition that has to be met at a particular point in a match,
without consuming any characters from the subject string. The use of sub-
patterns for more complicated assertions is described below. The backslashed
assertions are:

\b word boundary
\B not a word boundary
\A start of subject (independent of multiline mode)
\Z end of subject or newline at end (independent of multi-

line mode)
\z end of subject (independent of multiline mode)

These assertions may not appear in character classes (but note that ”\b”
has a different meaning, namely the backspace character, inside a character
class).

A word boundary is a position in the subject string where the current
character and the previous character do not both match \w or \W (i.e. one

348 CHAPTER 12. REGULAR EXPRESSIONS

matches \w and the other matches \W), or the start or end of the string if
the first or last character matches \w , respectively.

The \A, \Z, and \z assertions differ from the traditional circumflex and
dollar (described below) in that they only ever match at the very start and
end of the subject string, whatever options are set. They are not affected by
the M flag (PCRE MULTILINE) or D flag (PCRE DOLLAR ENDONLY)
options. The difference between \Z and \z is that \Z matches before a
newline that is the last character of the string as well as at the end of the
string, whereas \z matches only at the end.

Circumflex and dollar

Outside a character class, in the default matching mode, the circumflex
character (ˆ) is an assertion which is true only if the current matching point
is at the start of the subject string. Inside a character class, circumflex has
an entirely different meaning (see below).

Circumflex need not be the first character of the pattern if a number of
alternatives are involved, but it should be the first thing in each alternative
in which it appears if the pattern is ever to match that branch. If all possible
alternatives start with a circumflex, that is, if the pattern is constrained to
match only at the start of the subject, it is said to be an ”anchored” pattern.
(There are also other constructs that can cause a pattern to be anchored.)

A dollar character is an assertion which is TRUE only if the current
matching point is at the end of the subject string, or immediately before a
newline character that is the last character in the string (by default). Dollar
need not be the last character of the pattern if a number of alternatives are
involved, but it should be the last item in any branch in which it appears.
Dollar has no special meaning in a character class.

The meaning of dollar can be changed so that it matches only at the very
end of the string, by setting the ”D” (PCRE DOLLAR ENDONLY) option
at compile or matching time. This does not affect the \Z assertion.

The meanings of the circumflex and dollar characters are changed if the
”M” (PCRE MULTILINE) option is set. When this is the case, they match
immediately after and immediately before an internal ”\n” character, re-
spectively, in addition to matching at the start and end of the subject string.
For example, the pattern /ˆabc$/ matches the subject string ”def\nabc” in
multiline mode, but not otherwise. Consequently, patterns that are anchored
in single line mode because all branches start with ”ˆ” are not anchored in
multiline mode. The ”D” (PCRE DOLLAR ENDONLY) option is ignored
if ”M” (PCRE MULTILINE) is set.

12.2. REGULAR EXPRESSIONS SYNTAX 349

Note that the sequences \A, \Z, and \z can be used to match the start
and end of the subject in both modes, and if all branches of a pattern start
with \A is it always anchored, whether ”M” (PCRE MULTILINE) is set or
not.

Full stop

Outside a character class, a dot in the pattern matches any one character
in the subject, including a non-printing character, but not (by default) new-
line. If the ”S” (PCRE DOTALL) option is set, then dots match newlines as
well. The handling of dot is entirely independent of the handling of circum-
flex and dollar, the only relationship being that they both involve newline
characters. Dot has no special meaning in a character class.

Square brackets

An opening square bracket introduces a character class, terminated by a
closing square bracket. A closing square bracket on its own is not special. If
a closing square bracket is required as a member of the class, it should be
the first data character in the class (after an initial circumflex, if present) or
escaped with a backslash.

A character class matches a single character in the subject; the character
must be in the set of characters defined by the class, unless the first character
in the class is a circumflex, in which case the subject character must not be in
the set defined by the class. If a circumflex is actually required as a member
of the class, ensure it is not the first character, or escape it with a backslash.

For example, the character class [aeiou] matches any lower case vowel,
while [ˆaeiou] matches any character that is not a lower case vowel. Note that
a circumflex is just a convenient notation for specifying the characters which
are in the class by enumerating those that are not. It is not an assertion:
it still consumes a character from the subject string, and fails if the current
pointer is at the end of the string.

When caseless matching is set, any letters in a class represent both their
upper case and lower case versions, so for example, a caseless [aeiou] matches
”A” as well as ”a”, and a caseless [ˆaeiou] does not match ”A”, whereas a
caseful version would.

The newline character is never treated in any special way in character
classes, whatever the setting of the ”S” (PCRE DOTALL) or ”M” (PCRE MULTILINE)
is. A class such as [ˆa] will always match a newline.

The minus (hyphen) character can be used to specify a range of characters
in a character class. For example, [d-m] matches any letter between d and

350 CHAPTER 12. REGULAR EXPRESSIONS

m, inclusive. If a minus character is required in a class, it must be escaped
with a backslash or appear in a position where it cannot be interpreted as
indicating a range, typically as the first or last character in the class.

It is not possible to have the literal character ”]” as the end character of
a range. A pattern such as [W-]46] is interpreted as a class of two characters
(”W” and ”-”) followed by a literal string ”46]”, so it would match ”W46]” or
”-46]”. However, if the ”]” is escaped with a backslash it is interpreted as the
end of range, so [W-\]46] is interpreted as a single class containing a range
followed by two separate characters. The octal or hexadecimal representation
of ”]” can also be used to end a range.

Ranges operate in ASCII collating sequence. They can also be used for
characters specified numerically, for example [\000-\037]. If a range that
includes letters is used when caseless matching is set, it matches the letters
in either case. For example, [W-c] is equivalent to [][\ˆ ‘wxyzabc], matched
caselessly, and if character tables for the ”fr” locale are in use, [\xc8-\xcb]
matches accented E characters in both cases.

The character types \d, \D, \s, \S, \w, and \W may also appear in a
character class, and add the characters that they match to the class. For
example, [\dABCDEF] matches any hexadecimal digit. A circumflex can
conveniently be used with the upper case character types to specify a more
restricted set of characters than the matching lower case type. For example,
the class [ˆ\W] matches any letter or digit, but not underscore.

All non-alphanumeric characters other than \, -, ˆ (at the start) and the
terminating] are non-special in character classes, but it does no harm if they
are escaped.

Vertical bar

Vertical bar ”|” characters are used to separate alternative patterns. For
example, the pattern gilbert|sullivan matches either ”gilbert” or ”sullivan”.
Any number of alternatives may appear, and an empty alternative is permit-
ted (matching the empty string). The matching process tries each alternative
in turn, from left to right, and the first one that succeeds is used. If the alter-
natives are within a subpattern (defined below), ”succeeds” means matching
the rest of the main pattern as well as the alternative in the subpattern.

Internal option setting

The settings of ”I” (PCRE CASELESS), ”M” (PCRE MULTILINE), ”S”
(PCRE DOTALL), ”U” (PCRE UNGREEDY), ”T” (PCRE EXTRA), and
”X” (PCRE EXTENDED) can be changed from within the pattern by a

12.2. REGULAR EXPRESSIONS SYNTAX 351

sequence of Perl option letters enclosed between ”(?” and ”)”. The option
letters are:

i for ”I” (PCRE CASELESS)
m for ”M” (PCRE MULTILINE)
s for ”S” (PCRE DOTALL)
x for ”X” (PCRE EXTENDED)
U for ”U” (PCRE UNGREEDY)
X for ”T” (PCRE EXTRA)

For example, (?im) sets caseless, multiline matching. It is also possible to
unset these options by preceding the letter with a hyphen, and a combined
setting and unsetting such as (?im-sx), which sets ”I” (PCRE CASELESS)
and ”M” (PCRE MULTILINE) while unsetting ”S” (PCRE DOTALL) and
”X” (PCRE EXTENDED), is also permitted. If a letter appears both before
and after the hyphen, the option is unset.

When an option change occurs at top level (that is, not inside subpattern
parentheses), the change applies to the remainder of the pattern that follows.
So /ab(?i)c/ matches only ”abc” and ”abC”.

If an option change occurs inside a subpattern, the effect is different. This
is a change of behaviour in Perl 5.005. An option change inside a subpattern
affects only that part of the subpattern that follows it, so (a(?i)b)c matches
abc and aBc and no other strings (assuming ”I” (PCRE CASELESS) is
not used). By this means, options can be made to have different settings
in different parts of the pattern. Any changes made in one alternative do
carry on into subsequent branches within the same subpattern. For example,
(a(?i)b|c) matches ”ab”, ”aB”, ”c”, and ”C”, even though when matching
”C” the first branch is abandoned before the option setting. This is because
the effects of option settings happen at compile time. There would be some
very weird behaviour otherwise.

The PCRE-specific options ”U” (PCRE UNGREEDY) and ”T” (PCRE EXTRA)
can be changed in the same way as the Perl-compatible options by using the
characters U and X respectively. The (?X) flag setting is special in that it
must always occur earlier in the pattern than any of the additional features
it turns on, even when it is at top level. It is best put at the start.

Subpatterns

Subpatterns are delimited by parentheses (round brackets), which can be
nested. Marking part of a pattern as a subpattern does two things:

352 CHAPTER 12. REGULAR EXPRESSIONS

1 It localizes a set of alternatives. For example, the pat-
tern cat(aract|erpillar|) matches one of the words ”cat”,
”cataract”, or ”caterpillar”. Without the parentheses, it
would match ”cataract”, ”erpillar” or the empty string.

2 It sets up the subpattern as a capturing subpattern (as
defined above). Opening parentheses are counted from
left to right (starting from 1) to obtain the numbers of
the capturing subpatterns.

For example, if the string ”the red king” is matched against the pattern
the ((red|white) (king|queen)) the captured substrings are ”red king”, ”red”,
and ”king”, and are numbered 1, 2, and 3.

The fact that plain parentheses fulfil two functions is not always helpful.
There are often times when a grouping subpattern is required without a
capturing requirement. If an opening parenthesis is followed by ”?:”, the
subpattern does not do any capturing, and is not counted when computing
the number of any subsequent capturing subpatterns. For example, if the
string ”the white queen” is matched against the pattern the ((?:red|white)
(king|queen)) the captured substrings are ”white queen” and ”queen”, and
are numbered 1 and 2. The maximum number of captured substrings is
99, and the maximum number of all subpatterns, both capturing and non-
capturing, is 200.

As a convenient shorthand, if any option settings are required at the start
of a non-capturing subpattern, the option letters may appear between the
”?” and the ”:”. Thus the two patterns

(?i:saturday|sunday)
(?:(?i)saturday|sunday)

match exactly the same set of strings. Because alternative branches are tried
from left to right, and options are not reset until the end of the subpattern
is reached, an option setting in one branch does affect subsequent branches,
so the above patterns match ”SUNDAY” as well as ”Saturday”.

Repetition

Repetition is specified by quantifiers, which can follow any of the following
items:

• a single character, possibly escaped;

• the . metacharacter;

12.2. REGULAR EXPRESSIONS SYNTAX 353

• a character class;

• a back reference (see next section);

• a parenthesized subpattern (unless it is an assertion - see below).

The general repetition quantifier specifies a minimum and maximum
number of permitted matches, by giving the two numbers in curly brack-
ets (braces), separated by a comma. The numbers must be less than 65536,
and the first must be less than or equal to the second. For example: z2,4
matches ”zz”, ”zzz”, or ”zzzz”. A closing brace on its own is not a special
character. If the second number is omitted, but the comma is present, there
is no upper limit; if the second number and the comma are both omitted,
the quantifier specifies an exact number of required matches. Thus [aeiou]3,
matches at least 3 successive vowels, but may match many more, while \d8
matches exactly 8 digits. An opening curly bracket that appears in a position
where a quantifier is not allowed, or one that does not match the syntax of a
quantifier, is taken as a literal character. For example, ,6 is not a quantifier,
but a literal string of four characters.

The quantifier 0 is permitted, causing the expression to behave as if the
previous item and the quantifier were not present.

For convenience (and historical compatibility) the three most common
quantifiers have single-character abbreviations:

∗ equivalent to {0,}
+ equivalent to {1,}
? equivalent to {0,1}

It is possible to construct infinite loops by following a subpattern that can
match no characters with a quantifier that has no upper limit, for example:
(a?)*

Earlier versions of Perl and PCRE used to give an error at compile time
for such patterns. However, because there are cases where this can be useful,
such patterns are now accepted, but if any repetition of the subpattern does
in fact match no characters, the loop is forcibly broken.

By default, the quantifiers are ”greedy”, that is, they match as much as
possible (up to the maximum number of permitted times), without causing
the rest of the pattern to fail. The classic example of where this gives prob-
lems is in trying to match comments in C programs. These appear between

354 CHAPTER 12. REGULAR EXPRESSIONS

the sequences /* and */ and within the sequence, individual * and / charac-
ters may appear. An attempt to match C comments by applying the pattern
/*.**/ to the string /* first command */ not comment /* second comment
/ fails, because it matches the entire string due to the greediness of the .
item.

However, if a quantifier is followed by a question mark, then it ceases to be
greedy, and instead matches the minimum number of times possible, so the
pattern /*.*?*/ does the right thing with the C comments. The meaning of
the various quantifiers is not otherwise changed, just the preferred number of
matches. Do not confuse this use of question mark with its use as a quantifier
in its own right. Because it has two uses, it can sometimes appear doubled,
as in \d??\d which matches one digit by preference, but can match two if
that is the only way the rest of the pattern matches.

If the ”U” (PCRE UNGREEDY) option is set (an option which is not
available in Perl) then the quantifiers are not greedy by default, but individ-
ual ones can be made greedy by following them with a question mark. In
other words, it inverts the default behaviour.

Quantifiers followed by + are ”possessive”. They eat as many characters
as possible and don’t return to match the rest of the pattern. Thus .*abc
matches ”aabc” but .*+abc doesn’t because .*+ eats the whole string.

When a parenthesized subpattern is quantified with a minimum repeat
count that is greater than 1 or with a limited maximum, more store is re-
quired for the compiled pattern, in proportion to the size of the minimum or
maximum.

If a pattern starts with .* or .0, and the ”S” (PCRE DOTALL) option
(equivalent to Perl’s /s) is set, thus allowing the . to match newlines, then
the pattern is implicitly anchored, because whatever follows will be tried
against every character position in the subject string, so there is no point in
retrying the overall match at any position after the first. PCRE treats such a
pattern as though it were preceded by \A. In cases where it is known that the
subject string contains no newlines, it is worth setting ”S” (PCRE DOTALL)
when the pattern begins with .* in order to obtain this optimization, or
alternatively using ’ˆ’ to indicate anchoring explicitly.

When a capturing subpattern is repeated, the value captured is the sub-
string that matched the final iteration. For example, after (tweedle[dume]3\s*)+
has matched ”tweedledum tweedledee” the value of the captured substring is
”tweedledee”. However, if there are nested capturing subpatterns, the cor-
responding captured values may have been set in previous iterations. For

12.2. REGULAR EXPRESSIONS SYNTAX 355

example, after /(a|(b))+/ matches ”aba” the value of the second captured
substring is ”b”.

Back references

Outside a character class, a backslash followed by a digit greater than 0
(and possibly further digits) is a back reference to a capturing subpattern
earlier (i.e. to its left) in the pattern, provided there have been that many
previous capturing left parentheses.

However, if the decimal number following the backslash is less than 10, it
is always taken as a back reference, and causes an error only if there are not
that many capturing left parentheses in the entire pattern. In other words,
the parentheses that are referenced need not be to the left of the reference for
numbers less than 10. See the section entitled ”Backslash” above for further
details of the handling of digits following a backslash.

A back reference matches whatever actually matched the capturing sub-
pattern in the current subject string, rather than anything matching the sub-
pattern itself. So the pattern (sens|respons)e and \1ibility matches ”sense
and sensibility” and ”response and responsibility”, but not ”sense and re-
sponsibility”. If caseful matching is in force at the time of the back reference,
then the case of letters is relevant. For example, ((?i)rah)\s+\1 matches ”rah
rah” and ”RAH RAH”, but not ”RAH rah”, even though the original cap-
turing subpattern is matched caselessly.

There may be more than one back reference to the same subpattern. If a
subpattern has not actually been used in a particular match, then any back
references to it always fail. For example, the pattern (a—(bc))\2 always fails
if it starts to match ”a” rather than ”bc”. Because there may be up to 99 back
references, all digits following the backslash are taken as part of a potential
back reference number. If the pattern continues with a digit character, then
some delimiter must be used to terminate the back reference. If the ”X”
(PCRE EXTENDED) option is set, this can be whitespace. Otherwise an
empty comment can be used.

A back reference that occurs inside the parentheses to which it refers
fails when the subpattern is first used, so, for example, (a\1) never matches.
However, such references can be useful inside repeated subpatterns. For
example, the pattern (a|b\1)+ matches any number of ”a”s and also ”aba”,
”ababaa” etc. At each iteration of the subpattern, the back reference matches
the character string corresponding to the previous iteration. In order for this
to work, the pattern must be such that the first iteration does not need to
match the back reference. This can be done using alternation, as in the
example above, or by a quantifier with a minimum of zero.

356 CHAPTER 12. REGULAR EXPRESSIONS

Assertions

An assertion is a test on the characters following or preceding the current
matching point that does not actually consume any characters. The simple
assertions coded as \b, \B, \A, \Z, \z, ˆ and $ are described above. More
complicated assertions are coded as subpatterns. There are two kinds: those
that look ahead of the current position in the subject string, and those that
look behind it.

An assertion subpattern is matched in the normal way, except that it does
not cause the current matching position to be changed. Lookahead assertions
start with (?= for positive assertions and (?! for negative assertions. For
example, \w+(?=;) matches a word followed by a semicolon, but does not
include the semicolon in the match, and foo(?!bar) matches any occurrence of
”foo” that is not followed by ”bar”. Note that the apparently similar pattern
(?!foo)bar does not find an occurrence of ”bar” that is preceded by something
other than ”foo”; it finds any occurrence of ”bar” whatsoever, because the
assertion (?!foo) is always TRUE when the next three characters are ”bar”.
A lookbehind assertion is needed to achieve this effect.

Lookbehind assertions start with (?¡= for positive assertions and (?¡! for
negative assertions. For example, (?¡!foo)bar does find an occurrence of ”bar”
that is not preceded by ”foo”. The contents of a lookbehind assertion are
restricted such that all the strings it matches must have a fixed length. How-
ever, if there are several alternatives, they do not all have to have the same
fixed length. Thus (?¡=bullock|donkey) is permitted, but (?¡!dogs?|cats?)
causes an error at compile time. Branches that match different length strings
are permitted only at the top level of a lookbehind assertion. This is an ex-
tension compared with Perl 5.005, which requires all branches to match the
same length of string. An assertion such as (?¡=ab(c|de)) is not permitted,
because its single top-level branch can match two different lengths, but it is
acceptable if rewritten to use two top-level branches: (?¡=abc|abde) The im-
plementation of lookbehind assertions is, for each alternative, to temporarily
move the current position back by the fixed width and then try to match.
If there are insufficient characters before the current position, the match is
deemed to fail. Lookbehinds in conjunction with once-only subpatterns can
be particularly useful for matching at the ends of strings; an example is given
at the end of the section on once-only subpatterns.

Several assertions (of any sort) may occur in succession. For example,
(?¡=\d3)(?¡!999)foo matches ”foo” preceded by three digits that are not
”999”. Notice that each of the assertions is applied independently at the
same point in the subject string. First there is a check that the previous

12.2. REGULAR EXPRESSIONS SYNTAX 357

three characters are all digits, then there is a check that the same three char-
acters are not ”999”. This pattern does not match ”foo” preceded by six
characters, the first of which are digits and the last three of which are not
”999”. For example, it doesn’t match ”123abcfoo”. A pattern to do that is
(?¡=\d3...)(?¡!999)foo. This time the first assertion looks at the preceding
six characters, checking that the first three are digits, and then the second
assertion checks that the preceding three characters are not ”999”.

Assertions can be nested in any combination. For example, (?¡=(?¡!foo)bar)baz
matches an occurrence of ”baz” that is preceded by ”bar” which in turn is
not preceded by ”foo”, while (?¡=\d3...(?¡!999))foo is another pattern which
matches ”foo” preceded by three digits and any three characters that are not
”999”.

Assertion subpatterns are not capturing subpatterns, and may not be
repeated, because it makes no sense to assert the same thing several times.
If any kind of assertion contains capturing subpatterns within it, these are
counted for the purposes of numbering the capturing subpatterns in the whole
pattern. However, substring capturing is carried out only for positive asser-
tions, because it does not make sense for negative assertions.

Assertions count towards the maximum of 200 parenthesized subpatterns.

Once-only subpatterns

With both maximizing and minimizing repetition, failure of what follows
normally causes the repeated item to be re-evaluated to see if a different
number of repeats allows the rest of the pattern to match. Sometimes it is
useful to prevent this, either to change the nature of the match, or to cause
it fail earlier than it otherwise might, when the author of the pattern knows
there is no point in carrying on.

Consider, for example, the pattern \d+foo when applied to the subject
line 123456bar.

After matching all 6 digits and then failing to match ”foo”, the normal
action of the matcher is to try again with only 5 digits matching the \d+
item, and then with 4, and so on, before ultimately failing. Once-only sub-
patterns provide the means for specifying that once a portion of the pattern
has matched, it is not to be re-evaluated in this way, so the matcher would
give up immediately on failing to match ”foo” the first time. The notation
is another kind of special parenthesis, starting with (?¿ as in this example:

(?¿\d+)bar

This kind of parenthesis ”locks up” the part of the pattern it contains
once it has matched, and a failure further into the pattern is prevented from

358 CHAPTER 12. REGULAR EXPRESSIONS

backtracking into it. Backtracking past it to previous items, however, works
as normal.

An alternative description is that a subpattern of this type matches the
string of characters that an identical standalone pattern would match, if
anchored at the current point in the subject string.

Once-only subpatterns are not capturing subpatterns. Simple cases such
as the above example can be thought of as a maximizing repeat that must
swallow everything it can. So, while both \d+ and \d+? are prepared to
adjust the number of digits they match in order to make the rest of the
pattern match, (?¿\d+) can only match an entire sequence of digits.

This construction can of course contain arbitrarily complicated subpat-
terns, and it can be nested.

Once-only subpatterns can be used in conjunction with look-behind asser-
tions to specify efficient matching at the end of the subject string. Consider
a simple pattern such as abcd$ when applied to a long string which does not
match. Because matching proceeds from left to right, PCRE will look for
each ”a” in the subject and then see if what follows matches the rest of the
pattern. If the pattern is specified as ˆ.*abcd$ then the initial .* matches
the entire string at first, but when this fails (because there is no following
”a”), it backtracks to match all but the last character, then all but the last
two characters, and so on. Once again the search for ”a” covers the entire
string, from right to left, so we are no better off. However, if the pattern
is written as ˆ(?¿.*)(?¡=abcd) then there can be no backtracking for the .*
item; it can match only the entire string. The subsequent lookbehind asser-
tion does a single test on the last four characters. If it fails, the match fails
immediately. For long strings, this approach makes a significant difference
to the processing time.

When a pattern contains an unlimited repeat inside a subpattern that
can itself be repeated an unlimited number of times, the use of a once-only
subpattern is the only way to avoid some failing matches taking a very long
time indeed. The pattern (\D+|¡\d+¿)*[!?] matches an unlimited number of
substrings that either consist of non-digits, or digits enclosed in <>, followed
by either ! or ?. When it matches, it runs quickly. However, if it is applied to
aa it takes a long
time before reporting failure. This is because the string can be divided
between the two repeats in a large number of ways, and all have to be tried.
(The example used [!?] rather than a single character at the end, because
both PCRE and Perl have an optimization that allows for fast failure when
a single character is used. They remember the last single character that is

12.2. REGULAR EXPRESSIONS SYNTAX 359

required for a match, and fail early if it is not present in the string.) If the
pattern is changed to ((?¿\D+)|¡\d+¿)*[!?] sequences of non-digits cannot
be broken, and failure happens quickly.

Conditional subpatterns

It is possible to cause the matching process to obey a subpattern condi-
tionally or to choose between two alternative subpatterns, depending on the
result of an assertion, or whether a previous capturing subpattern matched
or not. The two possible forms of conditional subpattern are:

(?(condition)yes-pattern)
(?(condition)yes-pattern—no-pattern)

If the condition is satisfied, the yes-pattern is used; otherwise the no-
pattern (if present) is used. If there are more than two alternatives in the
subpattern, a compile-time error occurs.

There are two kinds of condition. If the text between the parentheses
consists of a sequence of digits, then the condition is satisfied if the capturing
subpattern of that number has previously matched. Consider the following
pattern, which contains non-significant white space to make it more readable
(assume the ”X” (PCRE EXTENDED) option) and to divide it into three
parts for ease of discussion: (\()? [ˆ()]+ (?(1) \))

The first part matches an optional opening parenthesis, and if that char-
acter is present, sets it as the first captured substring. The second part
matches one or more characters that are not parentheses. The third part is a
conditional subpattern that tests whether the first set of parentheses matched
or not. If they did, that is, if subject started with an opening parenthesis,
the condition is TRUE , and so the yes-pattern is executed and a closing
parenthesis is required. Otherwise, since no-pattern is not present, the sub-
pattern matches nothing. In other words, this pattern matches a sequence
of non-parentheses, optionally enclosed in parentheses.

If the condition is the string (R) , it is satisfied if a recursive call to the
pattern or subpattern has been made. At ”top level”, the condition is false.

If the condition is not a sequence of digits or (R), it must be an assertion.
This may be a positive or negative lookahead or lookbehind assertion. Con-
sider this pattern, again containing non-significant white space, and with the
two alternatives on the second line:

(?(?=[^a-z]*[a-z])

\d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2})

360 CHAPTER 12. REGULAR EXPRESSIONS

The condition is a positive lookahead assertion that matches an optional
sequence of non-letters followed by a letter. In other words, it tests for the
presence of at least one letter in the subject. If a letter is found, the subject
is matched against the first alternative; otherwise it is matched against the
second. This pattern matches strings in one of the two forms dd-aaa-dd or
dd-dd-dd, where aaa are letters and dd are digits.

Comments

The sequence (?# marks the start of a comment which continues up to
the next closing parenthesis. Nested parentheses are not permitted. The
characters that make up a comment play no part in the pattern matching at
all.

If the ”X” (PCRE EXTENDED) option is set, an unescaped ’#’ charac-
ter outside a character class introduces a comment that continues up to the
next newline character in the pattern.

Recursive patterns

Consider the problem of matching a string in parentheses, allowing for
unlimited nested parentheses. Without the use of recursion, the best that
can be done is to use a pattern that matches up to some fixed depth of
nesting. It is not possible to handle an arbitrary nesting depth. Perl 5.6 has
provided an experimental facility that allows regular expressions to recurse
(among other things). The special item (?R) is provided for the specific case
of recursion. This PCRE pattern solves the parentheses problem (assume
the ”X” (PCRE EXTENDED) option is set so that white space is ignored):
\(((?¿[ˆ()]+) | (?R))* \)

First it matches an opening parenthesis. Then it matches any number of
substrings which can either be a sequence of non-parentheses, or a recursive
match of the pattern itself (i.e. a correctly parenthesized substring). Finally
there is a closing parenthesis.

This particular example pattern contains nested unlimited repeats, and so
the use of a once-only subpattern for matching strings of non-parentheses is
important when applying the pattern to strings that do not match. For exam-
ple, when it is applied to (aaa()
it yields ”no match” quickly. However, if a once-only subpattern is not used,
the match runs for a very long time indeed because there are so many differ-
ent ways the + and * repeats can carve up the subject, and all have to be
tested before failure can be reported.

The values set for any capturing subpatterns are those from the outermost
level of the recursion at which the subpattern value is set. If the pattern above

12.2. REGULAR EXPRESSIONS SYNTAX 361

is matched against (ab(cd)ef) the value for the capturing parentheses is ”ef”,
which is the last value taken on at the top level. If additional parentheses are
added, giving \((((?¿[ˆ()]+) | (?R))*) \) then the string they capture is
”ab(cd)ef”, the contents of the top level parentheses. If there are more than
15 capturing parentheses in a pattern, PCRE has to obtain extra memory
to store data during a recursion. If no memory can be obtained, it saves
data for the first 15 capturing parentheses only, as there is no way to give an
out-of-memory error from within a recursion.

If the syntax for a recursive subpattern reference (either by number or
by name) is used outside the parentheses to which it refers, it operates like
a subroutine in a programming language. An earlier example pointed out
that the pattern (sens|respons)e and \1ibility matches ”sense and sensibility”
and ”response and responsibility”, but not ”sense and responsibility”. If
instead the pattern (sens|respons)e and (?1)ibility is used, it does match
”sense and responsibility” as well as the other two strings. Such references
must, however, follow the subpattern to which they refer.

Performances

Certain items that may appear in patterns are more efficient than others.
It is more efficient to use a character class like [aeiou] than a set of alterna-
tives such as (a|e|i|o|u). In general, the simplest construction that provides
the required behaviour is usually the most efficient. Jeffrey Friedl’s book
contains a lot of discussion about optimizing regular expressions for efficient
performance.

When a pattern begins with .* and the ”S” (PCRE DOTALL) option
is set, the pattern is implicitly anchored by PCRE, since it can match only
at the start of a subject string. However, if ”S” (PCRE DOTALL) is not
set, PCRE cannot make this optimization, because the . metacharacter does
not then match a newline, and if the subject string contains newlines, the
pattern may match from the character immediately following one of them
instead of from the very start. For example, the pattern (.*) second matches
the subject ”first\nand second” (where \n stands for a newline character)
with the first captured substring being ”and”. In order to do this, PCRE
has to retry the match starting after every newline in the subject.

If you are using such a pattern with subject strings that do not contain
newlines, the best performance is obtained by setting ”S” (PCRE DOTALL),
or starting the pattern with ˆ.* to indicate explicit anchoring. That saves
PCRE from having to scan along the subject looking for a newline to restart
at.

362 CHAPTER 12. REGULAR EXPRESSIONS

Beware of patterns that contain nested indefinite repeats. These can take
a long time to run when applied to a string that does not match. Consider
the pattern fragment (a+)*

This can match ”aaaa” in 33 different ways, and this number increases
very rapidly as the string gets longer. (The * repeat can match 0, 1, 2, 3, or
4 times, and for each of those cases other than 0, the + repeats can match
different numbers of times.) When the remainder of the pattern is such that
the entire match is going to fail, PCRE has in principle to try every possible
variation, and this can take an extremely long time.

An optimization catches some of the more simple cases such as (a+)*b
where a literal character follows. Before embarking on the standard matching
procedure, PCRE checks that there is a ”b” later in the subject string, and
if there is not, it fails the match immediately. However, when there is no
following literal this optimization cannot be used. You can see the difference
by comparing the behaviour of (a+)*\d with the pattern above. The former
gives a failure almost instantly when applied to a whole line of ”a” characters,
whereas the latter takes an appreciable time with strings longer than about
20 characters.

Chapter 13

Errors List

13.1 MDC MUMPS standard errors list

MUMPS standard defines list of some errors. If this errors occurs, the appro-
priate error code with the ”M” prefix written to the $ecode system variable.
Here ”M” prefix mean standard error code.

MiniM Database Server implements function $v(”err”,2) to return text
description of error code.

$v("err",2,errcode)

Here instead errcode must be passed code of the error occurs, for example:

TEMP>s $ec=""

TEMP>w a

<UNDEFINED>

TEMP>s errcode=$p($ec,",",$l($ec,",")-1)

TEMP>s $e(errcode)=""

TEMP>w $v("err",2,errcode)

Undefined local variable.

MUMPS standard errors supported by MiniM Database Server:

1. Naked indicator undefined.
2. Invalid $FNumber code string combination.

363

364 CHAPTER 13. ERRORS LIST

3. $Random argument less than 1.
4. No true condition in $Select.
5. Line reference less than 0 (zero).
6. Undefined local variable.
7. Undefined global variable.
8. Undefined special variable.
9. Divide by zero.
10. Invalid pattern match range.
11. No parameters passed.
12. Invalid line reference (negative offset).
13. Invalid line reference (line not found).
14. Line level not one (1).
15. Undefined index variable.
16. Quit with an argument not allowed.
17. Quit with an argument required.
18. Fixed-length Read not greater than 0 (zero).
19. Cannot merge a tree or subtree into itself.
20. Line must have a formal list.
21. Formal list name duplication.
22. Set or Kill to ˆ$Global structured system variable name (SSVN) when

data in global.
23. Set or Kill to ˆ$Job structured system variable name (SSVN) for

non-existent job number.
24. Change to collation algorithm while subscripted local variables de-

fined.
26. Non-existent environment (non-existent namespace).
27. Attempt to roll back a transaction that is not re-startable.
28. Mathematical function, parameter out of range.
29. Set or Kill on structured system variable name (SSVN) not allowed

by implementation.
30. Reference to global variable with different collating sequence within

a collating algorithm.
31. Device control mnemonic expression used for a device without a

mnemonic space being selected.
32. Device control mnemonic used in user-defined mnemonic space which

has no associated line.
33. Set or Kill to ˆ$Routine when the routine specified exists.
35. Device does not support mnemonic spaces.
36. Incompatible mnemonic spaces.
37. Read from device identified by null string.
38. Invalid structured system variable name (SSVN) subscript.

13.2. MINIM ERRORS LIST 365

39. Invalid $Name argument.
40. Call by reference in the actual parameter list in Job command.
41. Invalid Lock argument within a transaction.
42. Invalid Quit within a transaction.
43. Invalid range value ($X,$Y).
44. Invalid command outside a transaction.
45. Invalid Goto reference.
57. A label is defined more than once in a routine.
58. Too few formal parameters.
60. Unsupported SSVN name.
75. String length exceeds implementation’s limit.

13.2 MiniM errors list

When error in MiniM process occurs, error name writes into system variable
$zerror between angle brackets with additional possible extended information
to detail what happened. And value of this variable is displayed on the screen
in interactive console and telnet screen. For example:

USER>w a

<UNDEFINED> *a

USER>w $ze

<UNDEFINED> *a

USER>

Some MiniM errors are standard errors and other are extended or user-
generated.

MiniM supported errors list:

BYTECODE

Routine bytecode corrupted.

Execution commands line bytecode corrupted.

Invalid or unsupported bytecode version.

COMMAND

Command got unsupported argument values, for example, write *expr,
where expr - negative unsupported integer.

366 CHAPTER 13. ERRORS LIST

The quit command with argument execution in context without return
value ($quit=0).

The quit command with argument cannot break for command.

The quit command with argument cannot break xecute command.

The kill command cannot be applied to specified structured system vari-
able.

The lock command contain invalid local or global variable name.

The tcommit command cannot be executed without transaction context
($tlevel=0).

The merge command cannot merge varible itself.

The merge command can merge only local or global variables.

The zwrite command cannot be applied to specified variable, it must be
a local or global variable.

The job command to run child process with concurrent socket got invalid
TCP device name.

DATABASE

Call undefined database name.

Database is defined, but don’t mounted.

Process cannot find global start point.

One of data file or data file directory does not exist.

Failed to open data file to read.

Data file have unsupported size, file corrupted.

Error while write to data file.

Low level data file locking or unlocking failed.

Database cache corrupted.

System database %SYS is absent.

Temporary database TEMP is absent.

Data file block corrupted.

Error in cache flush to data file.

Data file extending failed.

Joutnal file write failed.

13.2. MINIM ERRORS LIST 367

Database synchronization objects corrupted.

DBEXTEND

Database extend daemon failed to extend one of data file.

DBLIMIT

Process requires to extend database but detected database limit. Extend-
ing cannot be made now.

DBREADONLY

Process reguires write to readonly database.

DEVICE

Empty device identification string is unsupported.

Unknown device type specified in device identification string.

Error while interoperate with hardware or device driver.

Device operation not supported.

Device definition structure corrupted.

DEVICELIMIT

No more space in device table to open one more device.

DEVPARAM

Device option have unsupported value.

Mandatory device option value is absent.

DIVIDE

Division by zero is not supported.

EDITED

Routine bytecode is used for execution but is changed by other process.

ECODETRAP

Error generated by $ecode assignment non empty string.

ENDOFFILE

End of device input data detected by read command.

FNSYNTAX

Function FNUMBER got illegal symbols or illegal symbol combination
in second argument.

368 CHAPTER 13. ERRORS LIST

FUNCTION

Function got one or more unsupported argument values.

ILLEGAL VALUE

Math operation got result outside supported by CPU.

System variables $X and $Y got illegal values.

Date format is unsupported, function need $horolog date format.

Function $zdateh got unsupported date argument value, nonexisting date,
for example February 30.

Function $ztimeh got unsupported time argument value, nonexisting time,
for example 28 hours.

Function $zdate got argument outside supported range.

INTERRUPT

Process detected Ctrl+C is pressed in console or telnet mode.

INVALID BIT STRING

One of $bitXXX function detected argument has invalid or corrupted
bitstring format.

JOB

New process failed to start.

The kill command cannot remove self process from ˆ$JOB.

Process calls to nonexisting job entry in ˆ$JOB.

The job command got in new process environment on only local variables.

Data transfer to new jobbed process failed.

The job command cannot accept local variables by reference.

The job command got invalid routine name.

The job command cannot insert new record into jobs list, job list is full.
Job count limit is specified in minim.ini configuration file and in licence file.

Process list structure corrupted, job command failed to allocate one more
entry.

LABELREDEF

Failed to compile routine with doubled label names. Two or more labels
with the same name in one routine are not supported.

13.2. MINIM ERRORS LIST 369

LIBRARY LOAD

Failed to find external ZDLL module file, or this file is not dynamic
load library, or this library does not contain ZDLL initialization, or ZDLL
initialization failed on load.

LIST

One of $listXXX function failed to use argument as a list structure, list
format corrupted.

MAXNUMBER

Number overflow in math operation, result does not supported by CPU.

MAXOBJCODE

Error while compile routine to bytecode, result exceed bytecode limit
(32Kb).

MAXSTRING

String operation failed to create unsupported string length (32Kb).

MEMORY

Operating system does not grant enough memory value.

MINNUMBER

Number overflow in math operation, result does not supported by CPU.

MNEMSPACE

Unsupported routine name to handle mnemonics.

NAKED

Naked indicator is an empty string.

Naked indicator have not any subscripts.

NAME

Syntax error, unsupported local, global or structured system variable.

NAMESPACE

Call to nonexiting database using extended syntax for routine or global
variable.

NOLINE

Specified label or label + offset does not found to execute by do or goto
commands or user function.

370 CHAPTER 13. ERRORS LIST

NOROUTINE

Call to nonexisting routine to execute.

NOTOPEN

Specified device does not opened.

NOZROUTINE

Process cannot find routine to handle z-function.

NULL VALUE

List function detected list element has undefined value.

PARAMETER

Label has arguments but called without parenthesis.

Label has not arguments but called with arguments.

Label accept less arguments then passed.

PARAMLIMIT

Syntax error, passed more than supported arguments (maximum 63).

PATTERNLIMIT

Pattern complexity exceeds MiniM possibility, it is required much more
memory to handle pattern then MiniM supported.

PCRE

PCRE functions got syntax-incorrect regular expression.

RANGE

Some of $listXXX function detected list range specified incorrecly.

Some of $bitXXX function detected bit position specified incorrectly,
must be between 1 and 262104 inclusively.

Convertion function $zcvt detected incorrect input format or data length.

READ

Read commands not applicable to device in current mode, read data not
allowed or not supported.

Data transfer on read command failed at hardware or driver level.

SELECT

No any $select cases are successful.

13.2. MINIM ERRORS LIST 371

SELECTARGS

Function $select does not support so much arguments (maximum 255).

STORE

Local process storage has not enough memory block to store local variable.

SSVN VALUE

Read of this structured system variable not supported.

SSVNSUBSCRIPT

This structured system variable does not support one of specified sub-
script.

This structured system variable does not support so much subscripts.

STACKLIMIT

Process cannot create one more stack level, stack count exceed specified in
minim.ini configuration, section Process, key FrameCount. By default used
1024.

STRINGSTACK

Internal memory to calculate and pass temporary values fullfilled.

SUBSCRIPT

Empty string as subscript does not allowed.

Subscripts count exceed maximum count (63).

Total name length exceed maximum length (255).

SYNTAX

Syntax error - illegal spaces, unsupported command, system function,
variable name, operator, or unsupported punctuation.

Illegal command, $text, name or other indirection expression value.

SYNTAX INDEX LIMIT

Syntax error, subscript limit exceeded (maximum 63).

TLEVEL

Command exceed maximum allowed transaction level count.

UNDEFINED

Read of undefined local or global variable name.

372 CHAPTER 13. ERRORS LIST

The for command variable got undefined value.

UNIMPLEMENTED

This command, command argument, function, system variable or struc-
tured system variable not implemented in current MiniM version.

WRITE

Failed to write any data to device not allowed or not supported for this
device mode.

The write command failed to transfer data at hardware or driver level.

13.3 MiniM system errors list

Here are described MiniM system errors which info logged into minim.log
file. Some system errors may be fixed by server administrator, and to fis
other errors need to contact MiniM Database Server technical support at
support@minimdb.com.

Error # 0. MiniM cannot find errors file description. This file from
MiniM installation directory must have the minimerr.ini name and must be
in the /bin subdirectory. If your MiniM installation contains localized files,
for example, minimerr.dan.ini, you can copy this file to the minimerr.ini file.

Error # 1. MiniM cannot find current installation name. In need to be
present in configuration file minim.ini, section Server, key InstallName and
must be test string up to 31 symbol. For example:

InstallName = MINIM00

Error # 2. Failed to create common server synchronization area. It is
critical error, normal MiniM Database Server functioning is impossible. The
most frequent causes may be hardware failure and insufficient virtual memory
available.

Error # 3. Failed to open minim.log file to write. Check MiniM Database
Server accounts have enough permissions. Loggin failure does not crash any
data, but can crash MiniM process.

Error # 4. Failed to delete prior minim.log.bak file. Check server pro-
cesses have enough permissions to delete this file.

Error # 5. Failed to rename file minim.log into minim.log.bak. Check
server processes have enough permissions.

13.3. MINIM SYSTEM ERRORS LIST 373

Error # 6. Failed to write to minim.log file. Check server processes have
enough permissions.

Error # 7. Failed to get temporary process memory. It is critical error,
normal MiniM Database Server functioning is impossible. The most frequent
causes may be hardware failure and insufficient virtual memory available.

Error # 8. Failed to load national collation file %s.N, or this file cor-
rupted. This file must be present in the /nat subdirectory and be a MiniM
national collation file.

Error # 9. Failed to open shared internal server area. It is critical error,
normal MiniM Database Server functioning is impossible. The most frequent
causes may be hardware failure and insufficient virtual memory available.

Error # 10. Common memory access error. It is critical error, normal
MiniM Database Server functioning is impossible. The most frequent causes
may be hardware failure and insufficient virtual memory available.

Error # 11. Common memory areas creation error. It is critical error,
normal MiniM Database Server functioning is impossible. The most frequent
causes may be hardware failure and insufficient virtual memory available.

Error #12. Internal synchronization objects creation failed. Normal
MiniM Database Server functioning is impossible. One of the resent caus-
ing may be operating system resources exhaust and may be fixed to review
concurrent work MiniM Database Server with some of currently running ap-
plications.

Error # 13. Failed to create common server locking area. It is critical
error, normal MiniM Database Server functioning is impossible. The most
frequent causes may be hardware failure and insufficient virtual memory
available.

Error # 14. Failed to access common server lock area. It is critical error,
notmal MiniM Database Server functioning is impossible. The most frequent
causes may be hardware failure and insufficient virtual memory available.

Error #15. Failed to create common server configuration area. It is
critical error, normal MiniM Database Server functioning is impossible. The
most frequent causes may be hardware failure and insufficient virtual memory
available.

Error # 16. Failed to access common server configuration area. It is
critical error, normal MiniM Database Server functioning is impossible. The
most frequent causes may be hardware failure and insufficient virtual memory
available.

374 CHAPTER 13. ERRORS LIST

Error # 17. Failed to create common server configuration area. It is
critical error, normal MiniM Database Server functioning is impossible. The
most frequent causes may be hardware failure and insufficient virtual memory
available.

Error # 18. Server configuration file does not contain any database de-
fined. Without defined databases MiniM database server cannot work prop-
erly. Need to be described, at least, %sys and temp databases. Initial typical
MiniM installation contains %sys, temp, and user databases.

Error # 19. One of defined database does not contain root database file.
Root database file is mandatory for MiniM database.

Error # 20. Failed to determine database extent specification. Extent
data file name must be start with ”extent” with following extent number, for
example:

extent1 = disk:/filename1.dat

extent2 = disk:/filename2.dat

extent3 = disk:/filename3.dat

Error # 21. Failed to determine one of the extent number specification.
Extent data file name must be start with ”extent” with following extent
number:

extentNNN = filename,

here NNN must ne decimal extent number. Extents must follows in database
configuration one-by-one.

Error # 22. MiniM database configuration file minimdb.ini contains un-
supported key. Check minimdb.ini file sections and keys names.

Error # 23. One of database name configured exceed maximum database
name.

Error # 24. One of data file in database configuration file minimdb.ini
exceed maximum possible file name length.

Error # 25. One of configured MiniM database name contain forbidden
symbols.

Error # 26. Failed to create internal server page lock area. It is critical
error, normal MiniM Database Server functioning is impossible. The most
frequent causes may be hardware failure and insufficient virtual memory
available.

13.3. MINIM SYSTEM ERRORS LIST 375

Error # 27. Failed to create internal server page caching area. It is
critical error, normal MiniM Database Server functioning is impossible. The
most frequent causes may be hardware failure and insufficient virtual memory
available.

Error # 28. Failed to create internal server page cache descriptors area.
It is critical error, normal MiniM Database Server functioning is impossible.
The most frequent causes may be hardware failure and insufficient virtual
memory available.

Error # 29. Failed to create internal server cache queue area. It is critical
error, normal MiniM Database Server functioning is impossible. The most
frequent causes may be hardware failure and insufficient virtual memory
available.

Error # 30. Failed to create page cache synchronization objects. It is
critical error, normal MiniM Database Server functioning is impossible. The
most frequent causes may be hardware failure and insufficient virtual memory
available.

Error # 31. Failed to create page lock semaphors area. It is critical error,
normal MiniM Database Server functioning is impossible. The most frequent
causes may be hardware failure and insufficient virtual memory available.

Error # 32. Failed to create page cahe semaphore object. It is critical
error, normal MiniM Database Server functioning is impossible. The most
frequent causes may be hardware failure and insufficient virtual memory
available.

Error # 33. Failed to create internal server statistic’s area. It is critical
error, normal MiniM Database Server functioning is impossible. The most
frequent causes may be hardware failure and insufficient virtual memory
available.

Error # 34. Failed to use internal server statistic;s objects. It is critical
error, normal MiniM Database Server functioning is impossible. The most
frequent causes may be hardware failure and insufficient virtual memory
available.

Error # 35. Failed to create write daemon synchronization object. It
is critical error, normal MiniM Database Server functioning is impossible.
The most frequent causes may be hardware failure and insufficient virtual
memory available.

Error # 36. Failed to create journal daemon synchronization object. It
is critical error, normal MiniM Database Server functioning is impossible.

376 CHAPTER 13. ERRORS LIST

The most frequent causes may be hardware failure and insufficient virtual
memory available.

Error # 37. Failed to create internal server journaling queue area. It
is critical error, normal MiniM Database Server functioning is impossible.
The most frequent causes may be hardware failure and insufficient virtual
memory available.

Error # 38. Failed to read journal file header. It is a critical error. Check
file access permissions are enough, restore database from backup or remove
journal and backup all databases.

Error # 39. Failed to write journal file header. It is a critical error.
Check file access permissions are enough, restore database from backup or
remove journal and backup all databases.

Error # 40. Failed to write to current journal file. Check write permis-
sions for journal daemon (minimjd.exe) are enough and server has free disk
space.

Error # 41. Failed to open before image journal file minim.bij. Check
write daemon (minimwd.exe) have enough permissions and server have enougth
free disk space.

Error # 42. Failed to write to before image journal file minim.bij. Check
write daemon (minimwd.exe) have enough permissions and server have enougth
free disk space.

Error # 43. Failed to create shared routine cach area. It is critical error,
normal MiniM Database Server functioning is impossible. The most frequent
causes may be hardware failure and insufficient virtual memory available.

	Syntax
	Overall review
	Commands
	Functions
	Operators
	Expressions
	Constants
	System variables
	Structured system variables
	Local variables
	Global variables
	Postconditional expressions
	Strings and numbers
	Subscripts
	Naked indicator
	Indirection
	Routines
	Labels
	Parameters passing
	Comments
	Locks
	Input-output devices
	Device options
	Device mnemonics

	Operators
	Unary Plus (+)
	Addition (+)
	Unary Minus (-)
	Subtraction (-)
	Multiplication (*)
	Division (/)
	Integer Divide (backslash)
	Exponentation (**)
	Modulo (#)
	Concatenation (_)
	Not (')
	Equals (=)
	Greater (>)
	Greater or Equal (>=)
	Less (<)
	Less or Equal (<=)
	Contains ([)
	Follows (])
	Follows or Equal (]=)
	Sorts After (]])
	Sorts After or Equal (]]=)
	AND (&)
	Lazy AND (&&)
	OR (!)
	Lazy OR (||)
	XOR (!!)
	Pattern Matching (?)
	Hexadecimal (#)

	Commands
	CLOSE
	DO
	ELSE
	FOR
	GOTO
	HALT
	HANG
	IF
	JOB
	KILL
	KSUBSCRIPTS
	KVALUE
	LOCK
	MERGE
	NEW
	OPEN
	QUIT
	READ
	SET
	TCOMMIT
	TROLLBACK
	TSTART
	USE
	WRITE
	XECUTE

	Z - Commands
	ZNEW
	ZNSPACE
	ZPRINT
	ZSYNC
	ZTRAP
	ZWRITE
	ZZDUMP

	Standard Functions
	$ASCII
	$BIT
	$BITCOUNT
	$BITFIND
	$BITLOGIC
	$CHAR
	$DATA
	$EXTRACT
	$FIND
	$FNUMBER
	$GET
	$JUSTIFY
	$INCREMENT
	$LENGTH
	$LIST
	$LISTBUILD
	$LISTDATA
	$LISTFIND
	$LISTFROMSTRING
	$LISTGET
	$LISTLENGTH
	$LISTSAME
	$LISTTOSTRING
	$LISTVALID
	$NAME
	$ORDER
	$PIECE
	$QLENGTH
	$QSUBSCRIPT
	$QUERY
	$RANDOM
	$REPLACE
	$REVERSE
	$SELECT
	$STACK
	$TEXT
	$TRANSLATE
	$VIEW
	$VIEW("db")
	$VIEW("dev")
	$VIEW("err")
	$VIEW("file")
	$VIEW("jrnl")
	$VIEW("lock")
	$VIEW("log")
	$VIEW("perf")
	$VIEW("proc")
	$VIEW("rou")

	Z - Functions
	$ZABS
	$ZARCCOS
	$ZARCSIN
	$ZARCTAN
	$ZBITAND
	$ZBITCAT
	$ZBITCOUNT
	$ZBITEXTRACT
	$ZBITFIND
	$ZBITGET
	$ZBITLEN
	$ZBITNOT
	$ZBITOR
	$ZBITROT
	$ZBITSET
	$ZBITSTR
	$ZBITXOR
	$ZBOOLEAN
	$ZCOS
	$ZCOT
	$ZCRC
	$ZCSC
	$ZCONVERT
	$ZDATE
	$ZDATEH
	$ZDLL
	$ZEXP
	$ZLASCII
	$ZLCHAR
	$ZLCASE
	$ZLN
	$ZLOG
	$ZLOWER
	$ZPCREMATCH
	$ZPCREREPLACE
	$ZPCRESEARCH
	$ZPOWER
	$ZPREVIOUS
	$ZQASCII
	$ZQCHAR
	$ZQUOTE
	$ZSEC
	$ZSIN
	$ZSQR
	$ZTAN
	$ZTIME
	$ZTIMEH
	$ZUCASE
	$ZUPPER
	$ZVERSION
	$ZWASCII
	$ZWCHAR

	System Variables
	$DEVICE
	$HOROLOG
	$ECODE
	$ESTACK
	$ETRAP
	$IO
	$JOB
	$KEY
	$PRINCIPAL
	$QUIT
	$REFERENCE
	$STACK
	$STORAGE
	$SYSTEM
	$TEST
	$TLEVEL
	$X
	$Y

	System Z - Variables
	$ZCHILD
	$ZEOF
	$ZERROR
	$ZGUID
	$ZHOROLOG
	$ZNAME
	$ZNSPACE
	$ZPARENT
	$ZPI
	$ZREFERENCE
	$ZTIMESTAMP
	$ZTIMEZONE
	$ZTRAP
	$ZVERSION

	Structured System Variables
	$DEVICE
	$GLOBAL
	$JOB
	$LOCK
	$ROUTINE

	Device Parameters
	COM
	CON
	DLL
	FILE
	MEM
	NULL
	PIPE
	PRN
	STD
	STORE
	TCP
	TNT

	Error Handling
	Error handling tools
	Error handler scheme
	Error generation

	Regular Expressions
	Regular Expressions Options
	Regular Expressions Syntax

	Errors List
	MDC MUMPS standard errors list
	MiniM errors list
	MiniM system errors list

